Aromātai
1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 25 ( 0.25 - 1 ) ( 0.25 + 1 ) ( - 0.384 ) } { 6 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{25\left(-0.75\right)\left(0.25+1\right)\left(-0.384\right)}{6}
Tangohia te 1 i te 0.25, ka -0.75.
\frac{-18.75\left(0.25+1\right)\left(-0.384\right)}{6}
Whakareatia te 25 ki te -0.75, ka -18.75.
\frac{-18.75\times 1.25\left(-0.384\right)}{6}
Tāpirihia te 0.25 ki te 1, ka 1.25.
\frac{-23.4375\left(-0.384\right)}{6}
Whakareatia te -18.75 ki te 1.25, ka -23.4375.
\frac{9}{6}
Whakareatia te -23.4375 ki te -0.384, ka 9.
\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}