Aromātai
\frac{7}{10}=0.7
Tauwehe
\frac{7}{2 \cdot 5} = 0.7
Tohaina
Kua tāruatia ki te papatopenga
\frac{25}{6}\times \frac{3}{20}+\left(\frac{3}{2}\right)^{2}\times \frac{1}{30}
Whakawehe \frac{25}{6} ki te \frac{20}{3} mā te whakarea \frac{25}{6} ki te tau huripoki o \frac{20}{3}.
\frac{25\times 3}{6\times 20}+\left(\frac{3}{2}\right)^{2}\times \frac{1}{30}
Me whakarea te \frac{25}{6} ki te \frac{3}{20} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{75}{120}+\left(\frac{3}{2}\right)^{2}\times \frac{1}{30}
Mahia ngā whakarea i roto i te hautanga \frac{25\times 3}{6\times 20}.
\frac{5}{8}+\left(\frac{3}{2}\right)^{2}\times \frac{1}{30}
Whakahekea te hautanga \frac{75}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{5}{8}+\frac{9}{4}\times \frac{1}{30}
Tātaihia te \frac{3}{2} mā te pū o 2, kia riro ko \frac{9}{4}.
\frac{5}{8}+\frac{9\times 1}{4\times 30}
Me whakarea te \frac{9}{4} ki te \frac{1}{30} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{5}{8}+\frac{9}{120}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 1}{4\times 30}.
\frac{5}{8}+\frac{3}{40}
Whakahekea te hautanga \frac{9}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{25}{40}+\frac{3}{40}
Ko te maha noa iti rawa atu o 8 me 40 ko 40. Me tahuri \frac{5}{8} me \frac{3}{40} ki te hautau me te tautūnga 40.
\frac{25+3}{40}
Tā te mea he rite te tauraro o \frac{25}{40} me \frac{3}{40}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{28}{40}
Tāpirihia te 25 ki te 3, ka 28.
\frac{7}{10}
Whakahekea te hautanga \frac{28}{40} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}