Whakaoti mō x
x=\frac{2}{5}=0.4
x=-\frac{2}{5}=-0.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
25x^{2}-4=0
Me whakarea ngā taha e rua ki te 4.
\left(5x-2\right)\left(5x+2\right)=0
Whakaarohia te 25x^{2}-4. Tuhia anō te 25x^{2}-4 hei \left(5x\right)^{2}-2^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{2}{5} x=-\frac{2}{5}
Hei kimi otinga whārite, me whakaoti te 5x-2=0 me te 5x+2=0.
\frac{25}{4}x^{2}=1
Me tāpiri te 1 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=1\times \frac{4}{25}
Me whakarea ngā taha e rua ki te \frac{4}{25}, te tau utu o \frac{25}{4}.
x^{2}=\frac{4}{25}
Whakareatia te 1 ki te \frac{4}{25}, ka \frac{4}{25}.
x=\frac{2}{5} x=-\frac{2}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
\frac{25}{4}x^{2}-1=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{25}{4}\left(-1\right)}}{2\times \frac{25}{4}}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi \frac{25}{4} mō a, 0 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{25}{4}\left(-1\right)}}{2\times \frac{25}{4}}
Pūrua 0.
x=\frac{0±\sqrt{-25\left(-1\right)}}{2\times \frac{25}{4}}
Whakareatia -4 ki te \frac{25}{4}.
x=\frac{0±\sqrt{25}}{2\times \frac{25}{4}}
Whakareatia -25 ki te -1.
x=\frac{0±5}{2\times \frac{25}{4}}
Tuhia te pūtakerua o te 25.
x=\frac{0±5}{\frac{25}{2}}
Whakareatia 2 ki te \frac{25}{4}.
x=\frac{2}{5}
Nā, me whakaoti te whārite x=\frac{0±5}{\frac{25}{2}} ina he tāpiri te ±. Whakawehe 5 ki te \frac{25}{2} mā te whakarea 5 ki te tau huripoki o \frac{25}{2}.
x=-\frac{2}{5}
Nā, me whakaoti te whārite x=\frac{0±5}{\frac{25}{2}} ina he tango te ±. Whakawehe -5 ki te \frac{25}{2} mā te whakarea -5 ki te tau huripoki o \frac{25}{2}.
x=\frac{2}{5} x=-\frac{2}{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}