Aromātai
-\frac{r^{2}}{9}+\frac{25}{4}
Tauwehe
\frac{\left(-2r-15\right)\left(2r-15\right)}{36}
Tohaina
Kua tāruatia ki te papatopenga
\frac{25\times 9}{36}-\frac{4r^{2}}{36}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 9 ko 36. Whakareatia \frac{25}{4} ki te \frac{9}{9}. Whakareatia \frac{r^{2}}{9} ki te \frac{4}{4}.
\frac{25\times 9-4r^{2}}{36}
Tā te mea he rite te tauraro o \frac{25\times 9}{36} me \frac{4r^{2}}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{225-4r^{2}}{36}
Mahia ngā whakarea i roto o 25\times 9-4r^{2}.
\frac{225-4r^{2}}{36}
Tauwehea te \frac{1}{36}.
\left(15-2r\right)\left(15+2r\right)
Whakaarohia te 225-4r^{2}. Tuhia anō te 225-4r^{2} hei 15^{2}-\left(2r\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-2r+15\right)\left(2r+15\right)
Whakaraupapatia anō ngā kīanga tau.
\frac{\left(-2r+15\right)\left(2r+15\right)}{36}
Me tuhi anō te kīanga whakatauwehe katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}