Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{25\times 9}{36}-\frac{4r^{2}}{36}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 9 ko 36. Whakareatia \frac{25}{4} ki te \frac{9}{9}. Whakareatia \frac{r^{2}}{9} ki te \frac{4}{4}.
\frac{25\times 9-4r^{2}}{36}
Tā te mea he rite te tauraro o \frac{25\times 9}{36} me \frac{4r^{2}}{36}, me tango rāua mā te tango i ō raua taurunga.
\frac{225-4r^{2}}{36}
Mahia ngā whakarea i roto o 25\times 9-4r^{2}.
\frac{225-4r^{2}}{36}
Tauwehea te \frac{1}{36}.
\left(15-2r\right)\left(15+2r\right)
Whakaarohia te 225-4r^{2}. Tuhia anō te 225-4r^{2} hei 15^{2}-\left(2r\right)^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-2r+15\right)\left(2r+15\right)
Whakaraupapatia anō ngā kīanga tau.
\frac{\left(-2r+15\right)\left(2r+15\right)}{36}
Me tuhi anō te kīanga whakatauwehe katoa.