Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{25}{2}-\left(\frac{200}{40}-\frac{133}{40}-\frac{1}{2}\right)-11-\frac{13}{40}
Me tahuri te 5 ki te hautau \frac{200}{40}.
\frac{25}{2}-\left(\frac{200-133}{40}-\frac{1}{2}\right)-11-\frac{13}{40}
Tā te mea he rite te tauraro o \frac{200}{40} me \frac{133}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{25}{2}-\left(\frac{67}{40}-\frac{1}{2}\right)-11-\frac{13}{40}
Tangohia te 133 i te 200, ka 67.
\frac{25}{2}-\left(\frac{67}{40}-\frac{20}{40}\right)-11-\frac{13}{40}
Ko te maha noa iti rawa atu o 40 me 2 ko 40. Me tahuri \frac{67}{40} me \frac{1}{2} ki te hautau me te tautūnga 40.
\frac{25}{2}-\frac{67-20}{40}-11-\frac{13}{40}
Tā te mea he rite te tauraro o \frac{67}{40} me \frac{20}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{25}{2}-\frac{47}{40}-11-\frac{13}{40}
Tangohia te 20 i te 67, ka 47.
\frac{500}{40}-\frac{47}{40}-11-\frac{13}{40}
Ko te maha noa iti rawa atu o 2 me 40 ko 40. Me tahuri \frac{25}{2} me \frac{47}{40} ki te hautau me te tautūnga 40.
\frac{500-47}{40}-11-\frac{13}{40}
Tā te mea he rite te tauraro o \frac{500}{40} me \frac{47}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{453}{40}-11-\frac{13}{40}
Tangohia te 47 i te 500, ka 453.
\frac{453}{40}-\frac{440}{40}-\frac{13}{40}
Me tahuri te 11 ki te hautau \frac{440}{40}.
\frac{453-440}{40}-\frac{13}{40}
Tā te mea he rite te tauraro o \frac{453}{40} me \frac{440}{40}, me tango rāua mā te tango i ō raua taurunga.
\frac{13}{40}-\frac{13}{40}
Tangohia te 440 i te 453, ka 13.
0
Tangohia te \frac{13}{40} i te \frac{13}{40}, ka 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}