Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{25a\left(-b^{2}\right)}{3^{2}b^{6}}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{25a\left(-b^{2}\right)}{9b^{6}}
Tātaihia te 3 mā te pū o 2, kia riro ko 9.
\frac{-25ab^{2}}{9b^{6}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-25a}{9b^{4}}
Me whakakore tahi te b^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{25b^{2}}{9b^{6}}\right)a^{2-1})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{25}{9b^{4}}\right)a^{1})
Mahia ngā tātaitanga.
\left(-\frac{25}{9b^{4}}\right)a^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{25}{9b^{4}}\right)a^{0}
Mahia ngā tātaitanga.
\left(-\frac{25}{9b^{4}}\right)\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
-\frac{25}{9b^{4}}
Mō tētahi kupu t, t\times 1=t me 1t=t.