Whakaoti mō x
x = \frac{5 \sqrt{248089} + 2215}{18} \approx 261.412592793
x=\frac{2215-5\sqrt{248089}}{18}\approx -15.301481682
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 2400 } { x } - \frac { 50 } { x + 15 } = 9
Tohaina
Kua tāruatia ki te papatopenga
\left(x+15\right)\times 2400-x\times 50=9x\left(x+15\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -15,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+15\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+15.
2400x+36000-x\times 50=9x\left(x+15\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+15 ki te 2400.
2400x+36000-x\times 50=9x^{2}+135x
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te x+15.
2400x+36000-x\times 50-9x^{2}=135x
Tangohia te 9x^{2} mai i ngā taha e rua.
2400x+36000-x\times 50-9x^{2}-135x=0
Tangohia te 135x mai i ngā taha e rua.
2265x+36000-x\times 50-9x^{2}=0
Pahekotia te 2400x me -135x, ka 2265x.
2265x+36000-50x-9x^{2}=0
Whakareatia te -1 ki te 50, ka -50.
2215x+36000-9x^{2}=0
Pahekotia te 2265x me -50x, ka 2215x.
-9x^{2}+2215x+36000=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-2215±\sqrt{2215^{2}-4\left(-9\right)\times 36000}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, 2215 mō b, me 36000 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2215±\sqrt{4906225-4\left(-9\right)\times 36000}}{2\left(-9\right)}
Pūrua 2215.
x=\frac{-2215±\sqrt{4906225+36\times 36000}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-2215±\sqrt{4906225+1296000}}{2\left(-9\right)}
Whakareatia 36 ki te 36000.
x=\frac{-2215±\sqrt{6202225}}{2\left(-9\right)}
Tāpiri 4906225 ki te 1296000.
x=\frac{-2215±5\sqrt{248089}}{2\left(-9\right)}
Tuhia te pūtakerua o te 6202225.
x=\frac{-2215±5\sqrt{248089}}{-18}
Whakareatia 2 ki te -9.
x=\frac{5\sqrt{248089}-2215}{-18}
Nā, me whakaoti te whārite x=\frac{-2215±5\sqrt{248089}}{-18} ina he tāpiri te ±. Tāpiri -2215 ki te 5\sqrt{248089}.
x=\frac{2215-5\sqrt{248089}}{18}
Whakawehe -2215+5\sqrt{248089} ki te -18.
x=\frac{-5\sqrt{248089}-2215}{-18}
Nā, me whakaoti te whārite x=\frac{-2215±5\sqrt{248089}}{-18} ina he tango te ±. Tango 5\sqrt{248089} mai i -2215.
x=\frac{5\sqrt{248089}+2215}{18}
Whakawehe -2215-5\sqrt{248089} ki te -18.
x=\frac{2215-5\sqrt{248089}}{18} x=\frac{5\sqrt{248089}+2215}{18}
Kua oti te whārite te whakatau.
\left(x+15\right)\times 2400-x\times 50=9x\left(x+15\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -15,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+15\right), arā, te tauraro pātahi he tino iti rawa te kitea o x,x+15.
2400x+36000-x\times 50=9x\left(x+15\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+15 ki te 2400.
2400x+36000-x\times 50=9x^{2}+135x
Whakamahia te āhuatanga tohatoha hei whakarea te 9x ki te x+15.
2400x+36000-x\times 50-9x^{2}=135x
Tangohia te 9x^{2} mai i ngā taha e rua.
2400x+36000-x\times 50-9x^{2}-135x=0
Tangohia te 135x mai i ngā taha e rua.
2265x+36000-x\times 50-9x^{2}=0
Pahekotia te 2400x me -135x, ka 2265x.
2265x-x\times 50-9x^{2}=-36000
Tangohia te 36000 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
2265x-50x-9x^{2}=-36000
Whakareatia te -1 ki te 50, ka -50.
2215x-9x^{2}=-36000
Pahekotia te 2265x me -50x, ka 2215x.
-9x^{2}+2215x=-36000
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-9x^{2}+2215x}{-9}=-\frac{36000}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\frac{2215}{-9}x=-\frac{36000}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}-\frac{2215}{9}x=-\frac{36000}{-9}
Whakawehe 2215 ki te -9.
x^{2}-\frac{2215}{9}x=4000
Whakawehe -36000 ki te -9.
x^{2}-\frac{2215}{9}x+\left(-\frac{2215}{18}\right)^{2}=4000+\left(-\frac{2215}{18}\right)^{2}
Whakawehea te -\frac{2215}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2215}{18}. Nā, tāpiria te pūrua o te -\frac{2215}{18} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{2215}{9}x+\frac{4906225}{324}=4000+\frac{4906225}{324}
Pūruatia -\frac{2215}{18} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{2215}{9}x+\frac{4906225}{324}=\frac{6202225}{324}
Tāpiri 4000 ki te \frac{4906225}{324}.
\left(x-\frac{2215}{18}\right)^{2}=\frac{6202225}{324}
Tauwehea x^{2}-\frac{2215}{9}x+\frac{4906225}{324}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2215}{18}\right)^{2}}=\sqrt{\frac{6202225}{324}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2215}{18}=\frac{5\sqrt{248089}}{18} x-\frac{2215}{18}=-\frac{5\sqrt{248089}}{18}
Whakarūnātia.
x=\frac{5\sqrt{248089}+2215}{18} x=\frac{2215-5\sqrt{248089}}{18}
Me tāpiri \frac{2215}{18} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}