Aromātai
-\frac{27x^{10}}{2}-27x^{7}-\frac{27x^{4}}{2}+\frac{3x}{2}
Tauwehe
\frac{3x\left(1-9x^{3}-18x^{6}-9x^{9}\right)}{2}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Whakareatia te 3 ki te 72, ka 216.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Me whakakore tahi te 8\left(x^{3}+1\right)^{\frac{3}{2}} i te taurunga me te tauraro.
\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2}
Me whakaroha te kīanga.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Whakareatia te 3 ki te 72, ka 216.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}.
factor(\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2})
Me whakakore tahi te 8\left(x^{3}+1\right)^{\frac{3}{2}} i te taurunga me te tauraro.
factor(\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2})
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te -9x^{9}-18x^{6}-9x^{3}+1.
3\left(-9x^{10}-18x^{7}-9x^{4}+x\right)
Whakaarohia te -27x^{10}-54x^{7}-27x^{4}+3x. Tauwehea te 3.
x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)
Whakaarohia te -9x^{10}-18x^{7}-9x^{4}+x. Tauwehea te x.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Me tuhi anō te kīanga whakatauwehe katoa. Whakarūnātia. Kāore te pūrau -9x^{9}-18x^{6}-9x^{3}+1 i whakatauwehea i te mea kāhore ōna pūtake whakahau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}