Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Whakareatia te 3 ki te 72, ka 216.
\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Me whakakore tahi te 8\left(x^{3}+1\right)^{\frac{3}{2}} i te taurunga me te tauraro.
\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2}
Me whakaroha te kīanga.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-3x^{4}\times 72\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 2 me te 2 kia riro ai te 4.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Whakareatia te 3 ki te 72, ka 216.
factor(\frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{16\left(x^{3}+1\right)^{\frac{3}{2}}})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{24x\left(x^{3}+1\right)^{\frac{3}{2}}-216x^{4}\left(x^{3}+1\right)^{\frac{7}{2}}}{16\left(x^{3}+1\right)^{\frac{3}{2}}}.
factor(\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2})
Me whakakore tahi te 8\left(x^{3}+1\right)^{\frac{3}{2}} i te taurunga me te tauraro.
factor(\frac{-27x^{10}-54x^{7}-27x^{4}+3x}{2})
Whakamahia te āhuatanga tohatoha hei whakarea te 3x ki te -9x^{9}-18x^{6}-9x^{3}+1.
3\left(-9x^{10}-18x^{7}-9x^{4}+x\right)
Whakaarohia te -27x^{10}-54x^{7}-27x^{4}+3x. Tauwehea te 3.
x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)
Whakaarohia te -9x^{10}-18x^{7}-9x^{4}+x. Tauwehea te x.
\frac{3x\left(-9x^{9}-18x^{6}-9x^{3}+1\right)}{2}
Me tuhi anō te kīanga whakatauwehe katoa. Whakarūnātia. Kāore te pūrau -9x^{9}-18x^{6}-9x^{3}+1 i whakatauwehea i te mea kāhore ōna pūtake whakahau.