Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{24^{1}x^{7}y^{2}}{16^{1}x^{3}y^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{24^{1}}{16^{1}}x^{7-3}y^{2-4}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{24^{1}}{16^{1}}x^{4}y^{2-4}
Tango 3 mai i 7.
\frac{24^{1}}{16^{1}}x^{4}y^{-2}
Tango 4 mai i 2.
\frac{3}{2}x^{4}\times \frac{1}{y^{2}}
Whakahekea te hautanga \frac{24}{16} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 8.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24y^{2}}{16y^{4}}x^{7-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3}{2y^{2}}x^{4})
Mahia ngā tātaitanga.
4\times \frac{3}{2y^{2}}x^{4-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{6}{y^{2}}x^{3}
Mahia ngā tātaitanga.