Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2x^{-3}y^{4}}{3y^{-7}x^{-2}z^{3}}
Me whakakore tahi te 12z^{2} i te taurunga me te tauraro.
\frac{2x^{-3}y^{11}}{3x^{-2}z^{3}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{2y^{11}}{3x^{1}z^{3}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te taurunga i te taupū o te tauraro.
\frac{2y^{11}}{3xz^{3}}
Tātaihia te x mā te pū o 1, kia riro ko x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24z^{2}y^{4}y^{7}}{36z^{5}}x^{-3-\left(-2\right)})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2y^{11}}{3z^{3}}\times \frac{1}{x})
Mahia ngā tātaitanga.
-\frac{2y^{11}}{3z^{3}}x^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{2y^{11}}{3z^{3}}\right)x^{-2}
Mahia ngā tātaitanga.