Whakaoti mō x
x=21.3
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times \frac{24}{7.2}=71
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times \frac{240}{72}=71
Whakarohaina te \frac{24}{7.2} mā te whakarea i te taurunga me te tauraro ki te 10.
x\times \frac{10}{3}=71
Whakahekea te hautanga \frac{240}{72} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 24.
x=71\times \frac{3}{10}
Me whakarea ngā taha e rua ki te \frac{3}{10}, te tau utu o \frac{10}{3}.
x=\frac{71\times 3}{10}
Tuhia te 71\times \frac{3}{10} hei hautanga kotahi.
x=\frac{213}{10}
Whakareatia te 71 ki te 3, ka 213.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}