Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{24\times 49}{7\times 8}\times \frac{3}{14}\times \frac{9}{27}
Me whakarea te \frac{24}{7} ki te \frac{49}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1176}{56}\times \frac{3}{14}\times \frac{9}{27}
Mahia ngā whakarea i roto i te hautanga \frac{24\times 49}{7\times 8}.
21\times \frac{3}{14}\times \frac{9}{27}
Whakawehea te 1176 ki te 56, kia riro ko 21.
\frac{21\times 3}{14}\times \frac{9}{27}
Tuhia te 21\times \frac{3}{14} hei hautanga kotahi.
\frac{63}{14}\times \frac{9}{27}
Whakareatia te 21 ki te 3, ka 63.
\frac{9}{2}\times \frac{9}{27}
Whakahekea te hautanga \frac{63}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{9}{2}\times \frac{1}{3}
Whakahekea te hautanga \frac{9}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{9\times 1}{2\times 3}
Me whakarea te \frac{9}{2} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{6}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 1}{2\times 3}.
\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.