Aromātai
\frac{3}{2}=1.5
Tauwehe
\frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\frac{24\times 49}{7\times 8}\times \frac{3}{14}\times \frac{9}{27}
Me whakarea te \frac{24}{7} ki te \frac{49}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1176}{56}\times \frac{3}{14}\times \frac{9}{27}
Mahia ngā whakarea i roto i te hautanga \frac{24\times 49}{7\times 8}.
21\times \frac{3}{14}\times \frac{9}{27}
Whakawehea te 1176 ki te 56, kia riro ko 21.
\frac{21\times 3}{14}\times \frac{9}{27}
Tuhia te 21\times \frac{3}{14} hei hautanga kotahi.
\frac{63}{14}\times \frac{9}{27}
Whakareatia te 21 ki te 3, ka 63.
\frac{9}{2}\times \frac{9}{27}
Whakahekea te hautanga \frac{63}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
\frac{9}{2}\times \frac{1}{3}
Whakahekea te hautanga \frac{9}{27} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
\frac{9\times 1}{2\times 3}
Me whakarea te \frac{9}{2} ki te \frac{1}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{9}{6}
Mahia ngā whakarea i roto i te hautanga \frac{9\times 1}{2\times 3}.
\frac{3}{2}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}