Whakaoti mō x
x=-54
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -18,18 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-18\right)\left(x+18\right), arā, te tauraro pātahi he tino iti rawa te kitea o 18-x,18+x.
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Hei kimi i te tauaro o 18+x, kimihia te tauaro o ia taurangi.
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -18-x ki te 24.
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-18 ki te 24.
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
Hei kimi i te tauaro o 24x-432, kimihia te tauaro o ia taurangi.
-432-48x+432=\left(x-18\right)\left(x+18\right)
Pahekotia te -24x me -24x, ka -48x.
-48x=\left(x-18\right)\left(x+18\right)
Tāpirihia te -432 ki te 432, ka 0.
-48x=x^{2}-324
Whakaarohia te \left(x-18\right)\left(x+18\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 18.
-48x-x^{2}=-324
Tangohia te x^{2} mai i ngā taha e rua.
-48x-x^{2}+324=0
Me tāpiri te 324 ki ngā taha e rua.
-x^{2}-48x+324=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\left(-1\right)\times 324}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, -48 mō b, me 324 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\left(-1\right)\times 324}}{2\left(-1\right)}
Pūrua -48.
x=\frac{-\left(-48\right)±\sqrt{2304+4\times 324}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-\left(-48\right)±\sqrt{2304+1296}}{2\left(-1\right)}
Whakareatia 4 ki te 324.
x=\frac{-\left(-48\right)±\sqrt{3600}}{2\left(-1\right)}
Tāpiri 2304 ki te 1296.
x=\frac{-\left(-48\right)±60}{2\left(-1\right)}
Tuhia te pūtakerua o te 3600.
x=\frac{48±60}{2\left(-1\right)}
Ko te tauaro o -48 ko 48.
x=\frac{48±60}{-2}
Whakareatia 2 ki te -1.
x=\frac{108}{-2}
Nā, me whakaoti te whārite x=\frac{48±60}{-2} ina he tāpiri te ±. Tāpiri 48 ki te 60.
x=-54
Whakawehe 108 ki te -2.
x=-\frac{12}{-2}
Nā, me whakaoti te whārite x=\frac{48±60}{-2} ina he tango te ±. Tango 60 mai i 48.
x=6
Whakawehe -12 ki te -2.
x=-54 x=6
Kua oti te whārite te whakatau.
-\left(18+x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -18,18 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-18\right)\left(x+18\right), arā, te tauraro pātahi he tino iti rawa te kitea o 18-x,18+x.
\left(-18-x\right)\times 24-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Hei kimi i te tauaro o 18+x, kimihia te tauaro o ia taurangi.
-432-24x-\left(x-18\right)\times 24=\left(x-18\right)\left(x+18\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -18-x ki te 24.
-432-24x-\left(24x-432\right)=\left(x-18\right)\left(x+18\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x-18 ki te 24.
-432-24x-24x+432=\left(x-18\right)\left(x+18\right)
Hei kimi i te tauaro o 24x-432, kimihia te tauaro o ia taurangi.
-432-48x+432=\left(x-18\right)\left(x+18\right)
Pahekotia te -24x me -24x, ka -48x.
-48x=\left(x-18\right)\left(x+18\right)
Tāpirihia te -432 ki te 432, ka 0.
-48x=x^{2}-324
Whakaarohia te \left(x-18\right)\left(x+18\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 18.
-48x-x^{2}=-324
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}-48x=-324
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}-48x}{-1}=-\frac{324}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\left(-\frac{48}{-1}\right)x=-\frac{324}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}+48x=-\frac{324}{-1}
Whakawehe -48 ki te -1.
x^{2}+48x=324
Whakawehe -324 ki te -1.
x^{2}+48x+24^{2}=324+24^{2}
Whakawehea te 48, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 24. Nā, tāpiria te pūrua o te 24 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+48x+576=324+576
Pūrua 24.
x^{2}+48x+576=900
Tāpiri 324 ki te 576.
\left(x+24\right)^{2}=900
Tauwehea x^{2}+48x+576. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+24\right)^{2}}=\sqrt{900}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+24=30 x+24=-30
Whakarūnātia.
x=6 x=-54
Me tango 24 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}