Aromātai
-\frac{16}{5}=-3.2
Tauwehe
-\frac{16}{5} = -3\frac{1}{5} = -3.2
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{5}\left(\frac{6}{9}-\frac{75}{100}\times \frac{15}{90}\right)-\frac{45}{10}
Whakahekea te hautanga \frac{24}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{12}{5}\left(\frac{2}{3}-\frac{75}{100}\times \frac{15}{90}\right)-\frac{45}{10}
Whakahekea te hautanga \frac{6}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{12}{5}\left(\frac{2}{3}-\frac{3}{4}\times \frac{15}{90}\right)-\frac{45}{10}
Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{12}{5}\left(\frac{2}{3}-\frac{3}{4}\times \frac{1}{6}\right)-\frac{45}{10}
Whakahekea te hautanga \frac{15}{90} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 15.
\frac{12}{5}\left(\frac{2}{3}-\frac{3\times 1}{4\times 6}\right)-\frac{45}{10}
Me whakarea te \frac{3}{4} ki te \frac{1}{6} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{12}{5}\left(\frac{2}{3}-\frac{3}{24}\right)-\frac{45}{10}
Mahia ngā whakarea i roto i te hautanga \frac{3\times 1}{4\times 6}.
\frac{12}{5}\left(\frac{2}{3}-\frac{1}{8}\right)-\frac{45}{10}
Whakahekea te hautanga \frac{3}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{12}{5}\left(\frac{16}{24}-\frac{3}{24}\right)-\frac{45}{10}
Ko te maha noa iti rawa atu o 3 me 8 ko 24. Me tahuri \frac{2}{3} me \frac{1}{8} ki te hautau me te tautūnga 24.
\frac{12}{5}\times \frac{16-3}{24}-\frac{45}{10}
Tā te mea he rite te tauraro o \frac{16}{24} me \frac{3}{24}, me tango rāua mā te tango i ō raua taurunga.
\frac{12}{5}\times \frac{13}{24}-\frac{45}{10}
Tangohia te 3 i te 16, ka 13.
\frac{12\times 13}{5\times 24}-\frac{45}{10}
Me whakarea te \frac{12}{5} ki te \frac{13}{24} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{156}{120}-\frac{45}{10}
Mahia ngā whakarea i roto i te hautanga \frac{12\times 13}{5\times 24}.
\frac{13}{10}-\frac{45}{10}
Whakahekea te hautanga \frac{156}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
\frac{13-45}{10}
Tā te mea he rite te tauraro o \frac{13}{10} me \frac{45}{10}, me tango rāua mā te tango i ō raua taurunga.
\frac{-32}{10}
Tangohia te 45 i te 13, ka -32.
-\frac{16}{5}
Whakahekea te hautanga \frac{-32}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}