Whakaoti mō x
x=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{23}{24}x+\frac{1}{3}=\frac{24}{6}+\frac{1}{6}
Me tahuri te 4 ki te hautau \frac{24}{6}.
\frac{23}{24}x+\frac{1}{3}=\frac{24+1}{6}
Tā te mea he rite te tauraro o \frac{24}{6} me \frac{1}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{23}{24}x+\frac{1}{3}=\frac{25}{6}
Tāpirihia te 24 ki te 1, ka 25.
\frac{23}{24}x=\frac{25}{6}-\frac{1}{3}
Tangohia te \frac{1}{3} mai i ngā taha e rua.
\frac{23}{24}x=\frac{25}{6}-\frac{2}{6}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri \frac{25}{6} me \frac{1}{3} ki te hautau me te tautūnga 6.
\frac{23}{24}x=\frac{25-2}{6}
Tā te mea he rite te tauraro o \frac{25}{6} me \frac{2}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{23}{24}x=\frac{23}{6}
Tangohia te 2 i te 25, ka 23.
x=\frac{23}{6}\times \frac{24}{23}
Me whakarea ngā taha e rua ki te \frac{24}{23}, te tau utu o \frac{23}{24}.
x=\frac{23\times 24}{6\times 23}
Me whakarea te \frac{23}{6} ki te \frac{24}{23} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{24}{6}
Me whakakore tahi te 23 i te taurunga me te tauraro.
x=4
Whakawehea te 24 ki te 6, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}