Whakaoti mō x (complex solution)
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
y\neq -2i\text{ and }y\neq 2i
Whakaoti mō x
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
Whakaoti mō y (complex solution)
\left\{\begin{matrix}\\y=\frac{\sqrt{848x-143}+1}{6}\text{, }&\text{unconditionally}\\y=\frac{-\sqrt{848x-143}+1}{6}\text{, }&x\neq \frac{3}{106}i\text{ and }x\neq -\frac{3}{106}i\end{matrix}\right.
Whakaoti mō y
y=\frac{-\sqrt{848x-143}+1}{6}
y=\frac{\sqrt{848x-143}+1}{6}\text{, }x\geq \frac{143}{848}
Graph
Tohaina
Kua tāruatia ki te papatopenga
212x+3y=9\left(y-2i\right)\left(y+2i\right)
Whakareatia ngā taha e rua o te whārite ki te \left(y-2i\right)\left(y+2i\right).
212x+3y=\left(9y-18i\right)\left(y+2i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te y-2i.
212x+3y=9y^{2}+36
Whakamahia te āhuatanga tuaritanga hei whakarea te 9y-18i ki te y+2i ka whakakotahi i ngā kupu rite.
212x=9y^{2}+36-3y
Tangohia te 3y mai i ngā taha e rua.
212x=9y^{2}-3y+36
He hanga arowhānui tō te whārite.
\frac{212x}{212}=\frac{9y^{2}-3y+36}{212}
Whakawehea ngā taha e rua ki te 212.
x=\frac{9y^{2}-3y+36}{212}
Mā te whakawehe ki te 212 ka wetekia te whakareanga ki te 212.
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
Whakawehe 9y^{2}+36-3y ki te 212.
212x+3y=9\left(y^{2}+4\right)
Whakareatia ngā taha e rua o te whārite ki te y^{2}+4.
212x+3y=9y^{2}+36
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te y^{2}+4.
212x=9y^{2}+36-3y
Tangohia te 3y mai i ngā taha e rua.
212x=9y^{2}-3y+36
He hanga arowhānui tō te whārite.
\frac{212x}{212}=\frac{9y^{2}-3y+36}{212}
Whakawehea ngā taha e rua ki te 212.
x=\frac{9y^{2}-3y+36}{212}
Mā te whakawehe ki te 212 ka wetekia te whakareanga ki te 212.
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
Whakawehe 9y^{2}+36-3y ki te 212.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}