Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Whakaoti mō x
Tick mark Image
Whakaoti mō y (complex solution)
Tick mark Image
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

212x+3y=9\left(y-2i\right)\left(y+2i\right)
Whakareatia ngā taha e rua o te whārite ki te \left(y-2i\right)\left(y+2i\right).
212x+3y=\left(9y-18i\right)\left(y+2i\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te y-2i.
212x+3y=9y^{2}+36
Whakamahia te āhuatanga tuaritanga hei whakarea te 9y-18i ki te y+2i ka whakakotahi i ngā kupu rite.
212x=9y^{2}+36-3y
Tangohia te 3y mai i ngā taha e rua.
212x=9y^{2}-3y+36
He hanga arowhānui tō te whārite.
\frac{212x}{212}=\frac{9y^{2}-3y+36}{212}
Whakawehea ngā taha e rua ki te 212.
x=\frac{9y^{2}-3y+36}{212}
Mā te whakawehe ki te 212 ka wetekia te whakareanga ki te 212.
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
Whakawehe 9y^{2}+36-3y ki te 212.
212x+3y=9\left(y^{2}+4\right)
Whakareatia ngā taha e rua o te whārite ki te y^{2}+4.
212x+3y=9y^{2}+36
Whakamahia te āhuatanga tohatoha hei whakarea te 9 ki te y^{2}+4.
212x=9y^{2}+36-3y
Tangohia te 3y mai i ngā taha e rua.
212x=9y^{2}-3y+36
He hanga arowhānui tō te whārite.
\frac{212x}{212}=\frac{9y^{2}-3y+36}{212}
Whakawehea ngā taha e rua ki te 212.
x=\frac{9y^{2}-3y+36}{212}
Mā te whakawehe ki te 212 ka wetekia te whakareanga ki te 212.
x=\frac{9y^{2}}{212}-\frac{3y}{212}+\frac{9}{53}
Whakawehe 9y^{2}+36-3y ki te 212.