Aromātai
\frac{181}{12}\approx 15.083333333
Tauwehe
\frac{181}{3 \cdot 2 ^ {2}} = 15\frac{1}{12} = 15.083333333333334
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
\frac { 21.3 + 21.2 + 2.1 + 21.2 + 21.3 + 3.4 } { 6 } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{42.5+2.1+21.2+21.3+3.4}{6}
Tāpirihia te 21.3 ki te 21.2, ka 42.5.
\frac{44.6+21.2+21.3+3.4}{6}
Tāpirihia te 42.5 ki te 2.1, ka 44.6.
\frac{65.8+21.3+3.4}{6}
Tāpirihia te 44.6 ki te 21.2, ka 65.8.
\frac{87.1+3.4}{6}
Tāpirihia te 65.8 ki te 21.3, ka 87.1.
\frac{90.5}{6}
Tāpirihia te 87.1 ki te 3.4, ka 90.5.
\frac{905}{60}
Whakarohaina te \frac{90.5}{6} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{181}{12}
Whakahekea te hautanga \frac{905}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}