Whakaoti mō x
x=-\frac{2}{11}\approx -0.181818182
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(x-2\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-2,x.
\left(x^{2}-2x\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-2.
21x^{2}-42x=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-2x ki te 21.
21x^{2}-42x=\left(x^{2}+x\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
21x^{2}-42x=16x^{2}+16x-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te 16.
21x^{2}-42x=16x^{2}+16x-\left(x^{2}-x-2\right)\times 6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
21x^{2}-42x=16x^{2}+16x-\left(6x^{2}-6x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-x-2 ki te 6.
21x^{2}-42x=16x^{2}+16x-6x^{2}+6x+12
Hei kimi i te tauaro o 6x^{2}-6x-12, kimihia te tauaro o ia taurangi.
21x^{2}-42x=10x^{2}+16x+6x+12
Pahekotia te 16x^{2} me -6x^{2}, ka 10x^{2}.
21x^{2}-42x=10x^{2}+22x+12
Pahekotia te 16x me 6x, ka 22x.
21x^{2}-42x-10x^{2}=22x+12
Tangohia te 10x^{2} mai i ngā taha e rua.
11x^{2}-42x=22x+12
Pahekotia te 21x^{2} me -10x^{2}, ka 11x^{2}.
11x^{2}-42x-22x=12
Tangohia te 22x mai i ngā taha e rua.
11x^{2}-64x=12
Pahekotia te -42x me -22x, ka -64x.
11x^{2}-64x-12=0
Tangohia te 12 mai i ngā taha e rua.
x=\frac{-\left(-64\right)±\sqrt{\left(-64\right)^{2}-4\times 11\left(-12\right)}}{2\times 11}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 11 mō a, -64 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-64\right)±\sqrt{4096-4\times 11\left(-12\right)}}{2\times 11}
Pūrua -64.
x=\frac{-\left(-64\right)±\sqrt{4096-44\left(-12\right)}}{2\times 11}
Whakareatia -4 ki te 11.
x=\frac{-\left(-64\right)±\sqrt{4096+528}}{2\times 11}
Whakareatia -44 ki te -12.
x=\frac{-\left(-64\right)±\sqrt{4624}}{2\times 11}
Tāpiri 4096 ki te 528.
x=\frac{-\left(-64\right)±68}{2\times 11}
Tuhia te pūtakerua o te 4624.
x=\frac{64±68}{2\times 11}
Ko te tauaro o -64 ko 64.
x=\frac{64±68}{22}
Whakareatia 2 ki te 11.
x=\frac{132}{22}
Nā, me whakaoti te whārite x=\frac{64±68}{22} ina he tāpiri te ±. Tāpiri 64 ki te 68.
x=6
Whakawehe 132 ki te 22.
x=-\frac{4}{22}
Nā, me whakaoti te whārite x=\frac{64±68}{22} ina he tango te ±. Tango 68 mai i 64.
x=-\frac{2}{11}
Whakahekea te hautanga \frac{-4}{22} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=6 x=-\frac{2}{11}
Kua oti te whārite te whakatau.
x\left(x-2\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-2,x.
\left(x^{2}-2x\right)\times 21=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x-2.
21x^{2}-42x=x\left(x+1\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-2x ki te 21.
21x^{2}-42x=\left(x^{2}+x\right)\times 16-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+1.
21x^{2}-42x=16x^{2}+16x-\left(x-2\right)\left(x+1\right)\times 6
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+x ki te 16.
21x^{2}-42x=16x^{2}+16x-\left(x^{2}-x-2\right)\times 6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
21x^{2}-42x=16x^{2}+16x-\left(6x^{2}-6x-12\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-x-2 ki te 6.
21x^{2}-42x=16x^{2}+16x-6x^{2}+6x+12
Hei kimi i te tauaro o 6x^{2}-6x-12, kimihia te tauaro o ia taurangi.
21x^{2}-42x=10x^{2}+16x+6x+12
Pahekotia te 16x^{2} me -6x^{2}, ka 10x^{2}.
21x^{2}-42x=10x^{2}+22x+12
Pahekotia te 16x me 6x, ka 22x.
21x^{2}-42x-10x^{2}=22x+12
Tangohia te 10x^{2} mai i ngā taha e rua.
11x^{2}-42x=22x+12
Pahekotia te 21x^{2} me -10x^{2}, ka 11x^{2}.
11x^{2}-42x-22x=12
Tangohia te 22x mai i ngā taha e rua.
11x^{2}-64x=12
Pahekotia te -42x me -22x, ka -64x.
\frac{11x^{2}-64x}{11}=\frac{12}{11}
Whakawehea ngā taha e rua ki te 11.
x^{2}-\frac{64}{11}x=\frac{12}{11}
Mā te whakawehe ki te 11 ka wetekia te whakareanga ki te 11.
x^{2}-\frac{64}{11}x+\left(-\frac{32}{11}\right)^{2}=\frac{12}{11}+\left(-\frac{32}{11}\right)^{2}
Whakawehea te -\frac{64}{11}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{32}{11}. Nā, tāpiria te pūrua o te -\frac{32}{11} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{64}{11}x+\frac{1024}{121}=\frac{12}{11}+\frac{1024}{121}
Pūruatia -\frac{32}{11} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{64}{11}x+\frac{1024}{121}=\frac{1156}{121}
Tāpiri \frac{12}{11} ki te \frac{1024}{121} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{32}{11}\right)^{2}=\frac{1156}{121}
Tauwehea x^{2}-\frac{64}{11}x+\frac{1024}{121}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32}{11}\right)^{2}}=\sqrt{\frac{1156}{121}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{32}{11}=\frac{34}{11} x-\frac{32}{11}=-\frac{34}{11}
Whakarūnātia.
x=6 x=-\frac{2}{11}
Me tāpiri \frac{32}{11} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}