Aromātai
\frac{10752\sqrt{15}-315\sqrt{5}}{262069}\approx 0.156210599
Tohaina
Kua tāruatia ki te papatopenga
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{\left(512+5\sqrt{3}\right)\left(512-5\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{21\sqrt{15}}{512+5\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 512-5\sqrt{3}.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{512^{2}-\left(5\sqrt{3}\right)^{2}}
Whakaarohia te \left(512+5\sqrt{3}\right)\left(512-5\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-\left(5\sqrt{3}\right)^{2}}
Tātaihia te 512 mā te pū o 2, kia riro ko 262144.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-5^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(5\sqrt{3}\right)^{2}.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-25\left(\sqrt{3}\right)^{2}}
Tātaihia te 5 mā te pū o 2, kia riro ko 25.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-25\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262144-75}
Whakareatia te 25 ki te 3, ka 75.
\frac{21\sqrt{15}\left(512-5\sqrt{3}\right)}{262069}
Tangohia te 75 i te 262144, ka 262069.
\frac{10752\sqrt{15}-105\sqrt{3}\sqrt{15}}{262069}
Whakamahia te āhuatanga tohatoha hei whakarea te 21\sqrt{15} ki te 512-5\sqrt{3}.
\frac{10752\sqrt{15}-105\sqrt{3}\sqrt{3}\sqrt{5}}{262069}
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
\frac{10752\sqrt{15}-105\times 3\sqrt{5}}{262069}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
\frac{10752\sqrt{15}-315\sqrt{5}}{262069}
Whakareatia te -105 ki te 3, ka -315.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}