Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{21\sqrt{15}}{2\sqrt{3}+5\sqrt{3}}
Tauwehea te 12=2^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 3} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{3}. Tuhia te pūtakerua o te 2^{2}.
\frac{21\sqrt{15}}{7\sqrt{3}}
Pahekotia te 2\sqrt{3} me 5\sqrt{3}, ka 7\sqrt{3}.
\frac{3\sqrt{15}}{\sqrt{3}}
Me whakakore tahi te 7 i te taurunga me te tauraro.
\frac{3\sqrt{15}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Whakangāwaritia te tauraro o \frac{3\sqrt{15}}{\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
\frac{3\sqrt{15}\sqrt{3}}{3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{3\sqrt{3}\sqrt{5}\sqrt{3}}{3}
Tauwehea te 15=3\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3\times 5} hei hua o ngā pūtake rua \sqrt{3}\sqrt{5}.
\frac{3\times 3\sqrt{5}}{3}
Whakareatia te \sqrt{3} ki te \sqrt{3}, ka 3.
3\sqrt{5}
Me whakakore te 3 me te 3.