Whakaoti mō x
x=-48
x=36
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 208 } { x + 16 } + 2 = \frac { 216 } { x }
Tohaina
Kua tāruatia ki te papatopenga
x\times 208+x\left(x+16\right)\times 2=\left(x+16\right)\times 216
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -16,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+16\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+16,x.
x\times 208+\left(x^{2}+16x\right)\times 2=\left(x+16\right)\times 216
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+16.
x\times 208+2x^{2}+32x=\left(x+16\right)\times 216
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+16x ki te 2.
240x+2x^{2}=\left(x+16\right)\times 216
Pahekotia te x\times 208 me 32x, ka 240x.
240x+2x^{2}=216x+3456
Whakamahia te āhuatanga tohatoha hei whakarea te x+16 ki te 216.
240x+2x^{2}-216x=3456
Tangohia te 216x mai i ngā taha e rua.
24x+2x^{2}=3456
Pahekotia te 240x me -216x, ka 24x.
24x+2x^{2}-3456=0
Tangohia te 3456 mai i ngā taha e rua.
2x^{2}+24x-3456=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24±\sqrt{24^{2}-4\times 2\left(-3456\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 24 mō b, me -3456 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24±\sqrt{576-4\times 2\left(-3456\right)}}{2\times 2}
Pūrua 24.
x=\frac{-24±\sqrt{576-8\left(-3456\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-24±\sqrt{576+27648}}{2\times 2}
Whakareatia -8 ki te -3456.
x=\frac{-24±\sqrt{28224}}{2\times 2}
Tāpiri 576 ki te 27648.
x=\frac{-24±168}{2\times 2}
Tuhia te pūtakerua o te 28224.
x=\frac{-24±168}{4}
Whakareatia 2 ki te 2.
x=\frac{144}{4}
Nā, me whakaoti te whārite x=\frac{-24±168}{4} ina he tāpiri te ±. Tāpiri -24 ki te 168.
x=36
Whakawehe 144 ki te 4.
x=-\frac{192}{4}
Nā, me whakaoti te whārite x=\frac{-24±168}{4} ina he tango te ±. Tango 168 mai i -24.
x=-48
Whakawehe -192 ki te 4.
x=36 x=-48
Kua oti te whārite te whakatau.
x\times 208+x\left(x+16\right)\times 2=\left(x+16\right)\times 216
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -16,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x+16\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+16,x.
x\times 208+\left(x^{2}+16x\right)\times 2=\left(x+16\right)\times 216
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te x+16.
x\times 208+2x^{2}+32x=\left(x+16\right)\times 216
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+16x ki te 2.
240x+2x^{2}=\left(x+16\right)\times 216
Pahekotia te x\times 208 me 32x, ka 240x.
240x+2x^{2}=216x+3456
Whakamahia te āhuatanga tohatoha hei whakarea te x+16 ki te 216.
240x+2x^{2}-216x=3456
Tangohia te 216x mai i ngā taha e rua.
24x+2x^{2}=3456
Pahekotia te 240x me -216x, ka 24x.
2x^{2}+24x=3456
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{2x^{2}+24x}{2}=\frac{3456}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{24}{2}x=\frac{3456}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+12x=\frac{3456}{2}
Whakawehe 24 ki te 2.
x^{2}+12x=1728
Whakawehe 3456 ki te 2.
x^{2}+12x+6^{2}=1728+6^{2}
Whakawehea te 12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 6. Nā, tāpiria te pūrua o te 6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+12x+36=1728+36
Pūrua 6.
x^{2}+12x+36=1764
Tāpiri 1728 ki te 36.
\left(x+6\right)^{2}=1764
Tauwehea x^{2}+12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+6\right)^{2}}=\sqrt{1764}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+6=42 x+6=-42
Whakarūnātia.
x=36 x=-48
Me tango 6 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}