Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki t
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(5t^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}t}(20t^{1})-20t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(5t^{1}-1)}{\left(5t^{1}-1\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(5t^{1}-1\right)\times 20t^{1-1}-20t^{1}\times 5t^{1-1}}{\left(5t^{1}-1\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(5t^{1}-1\right)\times 20t^{0}-20t^{1}\times 5t^{0}}{\left(5t^{1}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{5t^{1}\times 20t^{0}-20t^{0}-20t^{1}\times 5t^{0}}{\left(5t^{1}-1\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{5\times 20t^{1}-20t^{0}-20\times 5t^{1}}{\left(5t^{1}-1\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{100t^{1}-20t^{0}-100t^{1}}{\left(5t^{1}-1\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(100-100\right)t^{1}-20t^{0}}{\left(5t^{1}-1\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-20t^{0}}{\left(5t^{1}-1\right)^{2}}
Tango 100 mai i 100.
\frac{-20t^{0}}{\left(5t-1\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-20}{\left(5t-1\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.