Tauwehe
\frac{2\sqrt[3]{x}\left(-3\sqrt[3]{x}+10\right)}{3}
Aromātai
-2x^{\frac{2}{3}}+\frac{20\sqrt[3]{x}}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(10\sqrt[3]{x}-3x^{\frac{2}{3}}\right)}{3}
Tauwehea te \frac{2}{3}.
\sqrt[3]{x}\left(10-3\sqrt[3]{x}\right)
Whakaarohia te 10\sqrt[3]{x}-3x^{\frac{2}{3}}. Tauwehea te \sqrt[3]{x}.
\frac{2\sqrt[3]{x}\left(10-3\sqrt[3]{x}\right)}{3}
Me tuhi anō te kīanga whakatauwehe katoa.
\frac{20}{3}x^{\frac{1}{3}}-2x^{\frac{2}{3}}
Whakawehea te 10 ki te 5, kia riro ko 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}