Whakaoti mō x
x=2\sqrt{95}+19\approx 38.49358869
x=19-2\sqrt{95}\approx -0.49358869
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}\times 20=\left(x+1\right)^{2}\times 19
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}\left(x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(1+x\right)^{2},x^{2}.
x^{2}\times 20=\left(x^{2}+2x+1\right)\times 19
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}\times 20=19x^{2}+38x+19
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+2x+1 ki te 19.
x^{2}\times 20-19x^{2}=38x+19
Tangohia te 19x^{2} mai i ngā taha e rua.
x^{2}=38x+19
Pahekotia te x^{2}\times 20 me -19x^{2}, ka x^{2}.
x^{2}-38x=19
Tangohia te 38x mai i ngā taha e rua.
x^{2}-38x-19=0
Tangohia te 19 mai i ngā taha e rua.
x=\frac{-\left(-38\right)±\sqrt{\left(-38\right)^{2}-4\left(-19\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -38 mō b, me -19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-38\right)±\sqrt{1444-4\left(-19\right)}}{2}
Pūrua -38.
x=\frac{-\left(-38\right)±\sqrt{1444+76}}{2}
Whakareatia -4 ki te -19.
x=\frac{-\left(-38\right)±\sqrt{1520}}{2}
Tāpiri 1444 ki te 76.
x=\frac{-\left(-38\right)±4\sqrt{95}}{2}
Tuhia te pūtakerua o te 1520.
x=\frac{38±4\sqrt{95}}{2}
Ko te tauaro o -38 ko 38.
x=\frac{4\sqrt{95}+38}{2}
Nā, me whakaoti te whārite x=\frac{38±4\sqrt{95}}{2} ina he tāpiri te ±. Tāpiri 38 ki te 4\sqrt{95}.
x=2\sqrt{95}+19
Whakawehe 38+4\sqrt{95} ki te 2.
x=\frac{38-4\sqrt{95}}{2}
Nā, me whakaoti te whārite x=\frac{38±4\sqrt{95}}{2} ina he tango te ±. Tango 4\sqrt{95} mai i 38.
x=19-2\sqrt{95}
Whakawehe 38-4\sqrt{95} ki te 2.
x=2\sqrt{95}+19 x=19-2\sqrt{95}
Kua oti te whārite te whakatau.
x^{2}\times 20=\left(x+1\right)^{2}\times 19
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x^{2}\left(x+1\right)^{2}, arā, te tauraro pātahi he tino iti rawa te kitea o \left(1+x\right)^{2},x^{2}.
x^{2}\times 20=\left(x^{2}+2x+1\right)\times 19
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x+1\right)^{2}.
x^{2}\times 20=19x^{2}+38x+19
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}+2x+1 ki te 19.
x^{2}\times 20-19x^{2}=38x+19
Tangohia te 19x^{2} mai i ngā taha e rua.
x^{2}=38x+19
Pahekotia te x^{2}\times 20 me -19x^{2}, ka x^{2}.
x^{2}-38x=19
Tangohia te 38x mai i ngā taha e rua.
x^{2}-38x+\left(-19\right)^{2}=19+\left(-19\right)^{2}
Whakawehea te -38, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -19. Nā, tāpiria te pūrua o te -19 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-38x+361=19+361
Pūrua -19.
x^{2}-38x+361=380
Tāpiri 19 ki te 361.
\left(x-19\right)^{2}=380
Tauwehea x^{2}-38x+361. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-19\right)^{2}}=\sqrt{380}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-19=2\sqrt{95} x-19=-2\sqrt{95}
Whakarūnātia.
x=2\sqrt{95}+19 x=19-2\sqrt{95}
Me tāpiri 19 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}