Whakaoti mō n
n=3.3
Tohaina
Kua tāruatia ki te papatopenga
66\times 2.2=n\times 44
Tē taea kia ōrite te tāupe n ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 66n, arā, te tauraro pātahi he tino iti rawa te kitea o n,66.
145.2=n\times 44
Whakareatia te 66 ki te 2.2, ka 145.2.
n\times 44=145.2
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
n=\frac{145.2}{44}
Whakawehea ngā taha e rua ki te 44.
n=\frac{1452}{440}
Whakarohaina te \frac{145.2}{44} mā te whakarea i te taurunga me te tauraro ki te 10.
n=\frac{33}{10}
Whakahekea te hautanga \frac{1452}{440} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 44.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}