Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Tauwehea te z^{2}+4z-12. Tauwehea te z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(z-2\right)\left(z+6\right) me \left(z-1\right)\left(z+6\right) ko \left(z-2\right)\left(z-1\right)\left(z+6\right). Whakareatia \frac{2z+3}{\left(z-2\right)\left(z+6\right)} ki te \frac{z-1}{z-1}. Whakareatia \frac{7}{\left(z-1\right)\left(z+6\right)} ki te \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Tā te mea he rite te tauraro o \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} me \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Mahia ngā whakarea i roto o \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Whakakotahitia ngā kupu rite i 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Whakarohaina te \left(z-2\right)\left(z-1\right)\left(z+6\right).
\frac{2z+3}{\left(z-2\right)\left(z+6\right)}+\frac{7}{\left(z-1\right)\left(z+6\right)}
Tauwehea te z^{2}+4z-12. Tauwehea te z^{2}+5z-6.
\frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}+\frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(z-2\right)\left(z+6\right) me \left(z-1\right)\left(z+6\right) ko \left(z-2\right)\left(z-1\right)\left(z+6\right). Whakareatia \frac{2z+3}{\left(z-2\right)\left(z+6\right)} ki te \frac{z-1}{z-1}. Whakareatia \frac{7}{\left(z-1\right)\left(z+6\right)} ki te \frac{z-2}{z-2}.
\frac{\left(2z+3\right)\left(z-1\right)+7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Tā te mea he rite te tauraro o \frac{\left(2z+3\right)\left(z-1\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)} me \frac{7\left(z-2\right)}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2z^{2}-2z+3z-3+7z-14}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Mahia ngā whakarea i roto o \left(2z+3\right)\left(z-1\right)+7\left(z-2\right).
\frac{2z^{2}+8z-17}{\left(z-2\right)\left(z-1\right)\left(z+6\right)}
Whakakotahitia ngā kupu rite i 2z^{2}-2z+3z-3+7z-14.
\frac{2z^{2}+8z-17}{z^{3}+3z^{2}-16z+12}
Whakarohaina te \left(z-2\right)\left(z-1\right)\left(z+6\right).