Aromātai
-\frac{y}{\left(y-1\right)\left(y+3\right)}
Whakaroha
-\frac{y}{\left(y-1\right)\left(y+3\right)}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2\left(y-3\right)}{\left(y-3\right)\left(y+3\right)}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2y-6}{y^{2}-9}.
\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
Me whakakore tahi te y-3 i te taurunga me te tauraro.
\frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)}-\frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+3 me y-1 ko \left(y-1\right)\left(y+3\right). Whakareatia \frac{2}{y+3} ki te \frac{y-1}{y-1}. Whakareatia \frac{y}{y-1} ki te \frac{y+3}{y+3}.
\frac{2\left(y-1\right)-y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Tā te mea he rite te tauraro o \frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)} me \frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2y-2-y^{2}-3y}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Mahia ngā whakarea i roto o 2\left(y-1\right)-y\left(y+3\right).
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Whakakotahitia ngā kupu rite i 2y-2-y^{2}-3y.
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}
Tauwehea te y^{2}+2y-3.
\frac{-y-2-y^{2}+y^{2}+2}{\left(y-1\right)\left(y+3\right)}
Tā te mea he rite te tauraro o \frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)} me \frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-y}{\left(y-1\right)\left(y+3\right)}
Whakakotahitia ngā kupu rite i -y-2-y^{2}+y^{2}+2.
\frac{-y}{y^{2}+2y-3}
Whakarohaina te \left(y-1\right)\left(y+3\right).
\frac{2\left(y-3\right)}{\left(y-3\right)\left(y+3\right)}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2y-6}{y^{2}-9}.
\frac{2}{y+3}-\frac{y}{y-1}+\frac{y^{2}+2}{y^{2}+2y-3}
Me whakakore tahi te y-3 i te taurunga me te tauraro.
\frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)}-\frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o y+3 me y-1 ko \left(y-1\right)\left(y+3\right). Whakareatia \frac{2}{y+3} ki te \frac{y-1}{y-1}. Whakareatia \frac{y}{y-1} ki te \frac{y+3}{y+3}.
\frac{2\left(y-1\right)-y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Tā te mea he rite te tauraro o \frac{2\left(y-1\right)}{\left(y-1\right)\left(y+3\right)} me \frac{y\left(y+3\right)}{\left(y-1\right)\left(y+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2y-2-y^{2}-3y}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Mahia ngā whakarea i roto o 2\left(y-1\right)-y\left(y+3\right).
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{y^{2}+2y-3}
Whakakotahitia ngā kupu rite i 2y-2-y^{2}-3y.
\frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)}+\frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}
Tauwehea te y^{2}+2y-3.
\frac{-y-2-y^{2}+y^{2}+2}{\left(y-1\right)\left(y+3\right)}
Tā te mea he rite te tauraro o \frac{-y-2-y^{2}}{\left(y-1\right)\left(y+3\right)} me \frac{y^{2}+2}{\left(y-1\right)\left(y+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-y}{\left(y-1\right)\left(y+3\right)}
Whakakotahitia ngā kupu rite i -y-2-y^{2}+y^{2}+2.
\frac{-y}{y^{2}+2y-3}
Whakarohaina te \left(y-1\right)\left(y+3\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}