Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2^{1}x^{1}y^{2}}{6^{1}x^{3}y^{1}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{2^{1}}{6^{1}}x^{1-3}y^{2-1}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{2^{1}}{6^{1}}x^{-2}y^{2-1}
Tango 3 mai i 1.
\frac{2^{1}}{6^{1}}\times \frac{1}{x^{2}}y^{1}
Tango 1 mai i 2.
\frac{1}{3}\times \frac{1}{x^{2}}y
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2y^{2}}{6y}x^{1-3})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{y}{3}x^{-2})
Mahia ngā tātaitanga.
-2\times \frac{y}{3}x^{-2-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(-\frac{2y}{3}\right)x^{-3}
Mahia ngā tātaitanga.