Whakaoti mō x
x=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-4,x+1,\left(x-4\right)\left(x+1\right).
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te 2x-7 ka whakakotahi i ngā kupu rite.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+2 ka whakakotahi i ngā kupu rite.
2x^{2}-5x-7-x^{2}+2x+8=x+6
Hei kimi i te tauaro o x^{2}-2x-8, kimihia te tauaro o ia taurangi.
x^{2}-5x-7+2x+8=x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-3x-7+8=x+6
Pahekotia te -5x me 2x, ka -3x.
x^{2}-3x+1=x+6
Tāpirihia te -7 ki te 8, ka 1.
x^{2}-3x+1-x=6
Tangohia te x mai i ngā taha e rua.
x^{2}-4x+1=6
Pahekotia te -3x me -x, ka -4x.
x^{2}-4x+1-6=0
Tangohia te 6 mai i ngā taha e rua.
x^{2}-4x-5=0
Tangohia te 6 i te 1, ka -5.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -4 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)}}{2}
Pūrua -4.
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2}
Whakareatia -4 ki te -5.
x=\frac{-\left(-4\right)±\sqrt{36}}{2}
Tāpiri 16 ki te 20.
x=\frac{-\left(-4\right)±6}{2}
Tuhia te pūtakerua o te 36.
x=\frac{4±6}{2}
Ko te tauaro o -4 ko 4.
x=\frac{10}{2}
Nā, me whakaoti te whārite x=\frac{4±6}{2} ina he tāpiri te ±. Tāpiri 4 ki te 6.
x=5
Whakawehe 10 ki te 2.
x=-\frac{2}{2}
Nā, me whakaoti te whārite x=\frac{4±6}{2} ina he tango te ±. Tango 6 mai i 4.
x=-1
Whakawehe -2 ki te 2.
x=5 x=-1
Kua oti te whārite te whakatau.
x=5
Tē taea kia ōrite te tāupe x ki -1.
\left(x+1\right)\left(2x-7\right)-\left(x-4\right)\left(x+2\right)=x+6
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-4,x+1,\left(x-4\right)\left(x+1\right).
2x^{2}-5x-7-\left(x-4\right)\left(x+2\right)=x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te 2x-7 ka whakakotahi i ngā kupu rite.
2x^{2}-5x-7-\left(x^{2}-2x-8\right)=x+6
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x+2 ka whakakotahi i ngā kupu rite.
2x^{2}-5x-7-x^{2}+2x+8=x+6
Hei kimi i te tauaro o x^{2}-2x-8, kimihia te tauaro o ia taurangi.
x^{2}-5x-7+2x+8=x+6
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-3x-7+8=x+6
Pahekotia te -5x me 2x, ka -3x.
x^{2}-3x+1=x+6
Tāpirihia te -7 ki te 8, ka 1.
x^{2}-3x+1-x=6
Tangohia te x mai i ngā taha e rua.
x^{2}-4x+1=6
Pahekotia te -3x me -x, ka -4x.
x^{2}-4x=6-1
Tangohia te 1 mai i ngā taha e rua.
x^{2}-4x=5
Tangohia te 1 i te 6, ka 5.
x^{2}-4x+\left(-2\right)^{2}=5+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=5+4
Pūrua -2.
x^{2}-4x+4=9
Tāpiri 5 ki te 4.
\left(x-2\right)^{2}=9
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{9}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=3 x-2=-3
Whakarūnātia.
x=5 x=-1
Me tāpiri 2 ki ngā taha e rua o te whārite.
x=5
Tē taea kia ōrite te tāupe x ki -1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}