Whakaoti mō x
x=6
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+3x+2,x^{2}-4,x-2.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te 2x-5 ka whakakotahi i ngā kupu rite.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
Pahekotia te -9x me 4x, ka -5x.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
Tāpirihia te 10 ki te 4, ka 14.
2x^{2}-5x+14=x^{2}+3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+14-x^{2}=3x+2
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-5x+14=3x+2
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-5x+14-3x=2
Tangohia te 3x mai i ngā taha e rua.
x^{2}-8x+14=2
Pahekotia te -5x me -3x, ka -8x.
x^{2}-8x+14-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-8x+12=0
Tangohia te 2 i te 14, ka 12.
a+b=-8 ab=12
Hei whakaoti i te whārite, whakatauwehea te x^{2}-8x+12 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x-6\right)\left(x-2\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=6 x=2
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-2=0.
x=6
Tē taea kia ōrite te tāupe x ki 2.
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+3x+2,x^{2}-4,x-2.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te 2x-5 ka whakakotahi i ngā kupu rite.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
Pahekotia te -9x me 4x, ka -5x.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
Tāpirihia te 10 ki te 4, ka 14.
2x^{2}-5x+14=x^{2}+3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+14-x^{2}=3x+2
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-5x+14=3x+2
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-5x+14-3x=2
Tangohia te 3x mai i ngā taha e rua.
x^{2}-8x+14=2
Pahekotia te -5x me -3x, ka -8x.
x^{2}-8x+14-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-8x+12=0
Tangohia te 2 i te 14, ka 12.
a+b=-8 ab=1\times 12=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-6 b=-2
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(x^{2}-6x\right)+\left(-2x+12\right)
Tuhia anō te x^{2}-8x+12 hei \left(x^{2}-6x\right)+\left(-2x+12\right).
x\left(x-6\right)-2\left(x-6\right)
Tauwehea te x i te tuatahi me te -2 i te rōpū tuarua.
\left(x-6\right)\left(x-2\right)
Whakatauwehea atu te kīanga pātahi x-6 mā te whakamahi i te āhuatanga tātai tohatoha.
x=6 x=2
Hei kimi otinga whārite, me whakaoti te x-6=0 me te x-2=0.
x=6
Tē taea kia ōrite te tāupe x ki 2.
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+3x+2,x^{2}-4,x-2.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te 2x-5 ka whakakotahi i ngā kupu rite.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
Pahekotia te -9x me 4x, ka -5x.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
Tāpirihia te 10 ki te 4, ka 14.
2x^{2}-5x+14=x^{2}+3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+14-x^{2}=3x+2
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-5x+14=3x+2
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-5x+14-3x=2
Tangohia te 3x mai i ngā taha e rua.
x^{2}-8x+14=2
Pahekotia te -5x me -3x, ka -8x.
x^{2}-8x+14-2=0
Tangohia te 2 mai i ngā taha e rua.
x^{2}-8x+12=0
Tangohia te 2 i te 14, ka 12.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 12}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -8 mō b, me 12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 12}}{2}
Pūrua -8.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2}
Whakareatia -4 ki te 12.
x=\frac{-\left(-8\right)±\sqrt{16}}{2}
Tāpiri 64 ki te -48.
x=\frac{-\left(-8\right)±4}{2}
Tuhia te pūtakerua o te 16.
x=\frac{8±4}{2}
Ko te tauaro o -8 ko 8.
x=\frac{12}{2}
Nā, me whakaoti te whārite x=\frac{8±4}{2} ina he tāpiri te ±. Tāpiri 8 ki te 4.
x=6
Whakawehe 12 ki te 2.
x=\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{8±4}{2} ina he tango te ±. Tango 4 mai i 8.
x=2
Whakawehe 4 ki te 2.
x=6 x=2
Kua oti te whārite te whakatau.
x=6
Tē taea kia ōrite te tāupe x ki 2.
\left(x-2\right)\left(2x-5\right)+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -2,-1,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-2\right)\left(x+1\right)\left(x+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+3x+2,x^{2}-4,x-2.
2x^{2}-9x+10+\left(x+1\right)\times 4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-2 ki te 2x-5 ka whakakotahi i ngā kupu rite.
2x^{2}-9x+10+4x+4=\left(x+1\right)\left(x+2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x+1 ki te 4.
2x^{2}-5x+10+4=\left(x+1\right)\left(x+2\right)
Pahekotia te -9x me 4x, ka -5x.
2x^{2}-5x+14=\left(x+1\right)\left(x+2\right)
Tāpirihia te 10 ki te 4, ka 14.
2x^{2}-5x+14=x^{2}+3x+2
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te x+2 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+14-x^{2}=3x+2
Tangohia te x^{2} mai i ngā taha e rua.
x^{2}-5x+14=3x+2
Pahekotia te 2x^{2} me -x^{2}, ka x^{2}.
x^{2}-5x+14-3x=2
Tangohia te 3x mai i ngā taha e rua.
x^{2}-8x+14=2
Pahekotia te -5x me -3x, ka -8x.
x^{2}-8x=2-14
Tangohia te 14 mai i ngā taha e rua.
x^{2}-8x=-12
Tangohia te 14 i te 2, ka -12.
x^{2}-8x+\left(-4\right)^{2}=-12+\left(-4\right)^{2}
Whakawehea te -8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -4. Nā, tāpiria te pūrua o te -4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-8x+16=-12+16
Pūrua -4.
x^{2}-8x+16=4
Tāpiri -12 ki te 16.
\left(x-4\right)^{2}=4
Tauwehea x^{2}-8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-4=2 x-4=-2
Whakarūnātia.
x=6 x=2
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=6
Tē taea kia ōrite te tāupe x ki 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}