Whakaoti mō x
x=-2
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 2 x - 5 } { 6 } - \frac { 3 x + 1 } { 2 } = 1
Tohaina
Kua tāruatia ki te papatopenga
2x-5-3\left(3x+1\right)=6
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 6,2.
2x-5-9x-3=6
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3x+1.
-7x-5-3=6
Pahekotia te 2x me -9x, ka -7x.
-7x-8=6
Tangohia te 3 i te -5, ka -8.
-7x=6+8
Me tāpiri te 8 ki ngā taha e rua.
-7x=14
Tāpirihia te 6 ki te 8, ka 14.
x=\frac{14}{-7}
Whakawehea ngā taha e rua ki te -7.
x=-2
Whakawehea te 14 ki te -7, kia riro ko -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}