Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te 2x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te 2x-5 ka whakakotahi i ngā kupu rite.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
Pahekotia te 2x^{2} me 2x^{2}, ka 4x^{2}.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
Pahekotia te -5x me -3x, ka -8x.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
Tangohia te 5 i te 3, ka -2.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
4x^{2}-8x-2=2x^{2}-2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
4x^{2}-8x-2-2x^{2}=-2
Tangohia te 2x^{2} mai i ngā taha e rua.
2x^{2}-8x-2=-2
Pahekotia te 4x^{2} me -2x^{2}, ka 2x^{2}.
2x^{2}-8x-2+2=0
Me tāpiri te 2 ki ngā taha e rua.
2x^{2}-8x=0
Tāpirihia te -2 ki te 2, ka 0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, -8 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±8}{2\times 2}
Tuhia te pūtakerua o te \left(-8\right)^{2}.
x=\frac{8±8}{2\times 2}
Ko te tauaro o -8 ko 8.
x=\frac{8±8}{4}
Whakareatia 2 ki te 2.
x=\frac{16}{4}
Nā, me whakaoti te whārite x=\frac{8±8}{4} ina he tāpiri te ±. Tāpiri 8 ki te 8.
x=4
Whakawehe 16 ki te 4.
x=\frac{0}{4}
Nā, me whakaoti te whārite x=\frac{8±8}{4} ina he tango te ±. Tango 8 mai i 8.
x=0
Whakawehe 0 ki te 4.
x=4 x=0
Kua oti te whārite te whakatau.
\left(x-1\right)\left(2x-3\right)+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -1,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-1\right)\left(x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+1,x-1.
2x^{2}-5x+3+\left(x+1\right)\left(2x-5\right)=2\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x-1 ki te 2x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-5x+3+2x^{2}-3x-5=2\left(x-1\right)\left(x+1\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te x+1 ki te 2x-5 ka whakakotahi i ngā kupu rite.
4x^{2}-5x+3-3x-5=2\left(x-1\right)\left(x+1\right)
Pahekotia te 2x^{2} me 2x^{2}, ka 4x^{2}.
4x^{2}-8x+3-5=2\left(x-1\right)\left(x+1\right)
Pahekotia te -5x me -3x, ka -8x.
4x^{2}-8x-2=2\left(x-1\right)\left(x+1\right)
Tangohia te 5 i te 3, ka -2.
4x^{2}-8x-2=\left(2x-2\right)\left(x+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te x-1.
4x^{2}-8x-2=2x^{2}-2
Whakamahia te āhuatanga tuaritanga hei whakarea te 2x-2 ki te x+1 ka whakakotahi i ngā kupu rite.
4x^{2}-8x-2-2x^{2}=-2
Tangohia te 2x^{2} mai i ngā taha e rua.
2x^{2}-8x-2=-2
Pahekotia te 4x^{2} me -2x^{2}, ka 2x^{2}.
2x^{2}-8x=-2+2
Me tāpiri te 2 ki ngā taha e rua.
2x^{2}-8x=0
Tāpirihia te -2 ki te 2, ka 0.
\frac{2x^{2}-8x}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}-4x=\frac{0}{2}
Whakawehe -8 ki te 2.
x^{2}-4x=0
Whakawehe 0 ki te 2.
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=4
Pūrua -2.
\left(x-2\right)^{2}=4
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=2 x-2=-2
Whakarūnātia.
x=4 x=0
Me tāpiri 2 ki ngā taha e rua o te whārite.