Whakaoti mō x
x = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
2x-12=4\left(-2x+10\right)-2\left(x+6\right)
Me whakarea ngā taha e rua o te whārite ki te 8, arā, te tauraro pātahi he tino iti rawa te kitea o 8,2,4.
2x-12=-8x+40-2\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te -2x+10.
2x-12=-8x+40-2x-12
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te x+6.
2x-12=-10x+40-12
Pahekotia te -8x me -2x, ka -10x.
2x-12=-10x+28
Tangohia te 12 i te 40, ka 28.
2x-12+10x=28
Me tāpiri te 10x ki ngā taha e rua.
12x-12=28
Pahekotia te 2x me 10x, ka 12x.
12x=28+12
Me tāpiri te 12 ki ngā taha e rua.
12x=40
Tāpirihia te 28 ki te 12, ka 40.
x=\frac{40}{12}
Whakawehea ngā taha e rua ki te 12.
x=\frac{10}{3}
Whakahekea te hautanga \frac{40}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}