Whakaoti mō x
x=\frac{1}{4}=0.25
Graph
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { 2 x - 1 } { 4 x } = \frac { x - 1 } { 2 x + 1 }
Tohaina
Kua tāruatia ki te papatopenga
\left(2x+1\right)\left(2x-1\right)=4x\left(x-1\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara -\frac{1}{2},0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4x\left(2x+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o 4x,2x+1.
\left(2x\right)^{2}-1=4x\left(x-1\right)
Whakaarohia te \left(2x+1\right)\left(2x-1\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Pūrua 1.
2^{2}x^{2}-1=4x\left(x-1\right)
Whakarohaina te \left(2x\right)^{2}.
4x^{2}-1=4x\left(x-1\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
4x^{2}-1=4x^{2}-4x
Whakamahia te āhuatanga tohatoha hei whakarea te 4x ki te x-1.
4x^{2}-1-4x^{2}=-4x
Tangohia te 4x^{2} mai i ngā taha e rua.
-1=-4x
Pahekotia te 4x^{2} me -4x^{2}, ka 0.
-4x=-1
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{-1}{-4}
Whakawehea ngā taha e rua ki te -4.
x=\frac{1}{4}
Ka taea te hautanga \frac{-1}{-4} te whakamāmā ki te \frac{1}{4} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}