Whakaoti mō f
f=-\frac{6\left(x-1\right)}{3-5x}
x\neq \frac{3}{5}
Whakaoti mō x
x=-\frac{3\left(f-2\right)}{6-5f}
f\neq \frac{6}{5}
Graph
Tohaina
Kua tāruatia ki te papatopenga
6\left(2x-\left(7-5x\right)\right)=\frac{7}{6}f\times 6\left(5x-3\right)
Me whakarea ngā taha e rua o te whārite ki te 6\left(5x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9x-\left(3+4x\right),6.
6\left(2x-7+5x\right)=\frac{7}{6}f\times 6\left(5x-3\right)
Hei kimi i te tauaro o 7-5x, kimihia te tauaro o ia taurangi.
6\left(7x-7\right)=\frac{7}{6}f\times 6\left(5x-3\right)
Pahekotia te 2x me 5x, ka 7x.
42x-42=\frac{7}{6}f\times 6\left(5x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 7x-7.
42x-42=7f\left(5x-3\right)
Whakareatia te \frac{7}{6} ki te 6, ka 7.
42x-42=35xf-21f
Whakamahia te āhuatanga tohatoha hei whakarea te 7f ki te 5x-3.
35xf-21f=42x-42
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(35x-21\right)f=42x-42
Pahekotia ngā kīanga tau katoa e whai ana i te f.
\frac{\left(35x-21\right)f}{35x-21}=\frac{42x-42}{35x-21}
Whakawehea ngā taha e rua ki te 35x-21.
f=\frac{42x-42}{35x-21}
Mā te whakawehe ki te 35x-21 ka wetekia te whakareanga ki te 35x-21.
f=\frac{6\left(x-1\right)}{5x-3}
Whakawehe -42+42x ki te 35x-21.
6\left(2x-\left(7-5x\right)\right)=\frac{7}{6}f\times 6\left(5x-3\right)
Tē taea kia ōrite te tāupe x ki \frac{3}{5} nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6\left(5x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o 9x-\left(3+4x\right),6.
6\left(2x-7+5x\right)=\frac{7}{6}f\times 6\left(5x-3\right)
Hei kimi i te tauaro o 7-5x, kimihia te tauaro o ia taurangi.
6\left(7x-7\right)=\frac{7}{6}f\times 6\left(5x-3\right)
Pahekotia te 2x me 5x, ka 7x.
42x-42=\frac{7}{6}f\times 6\left(5x-3\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te 7x-7.
42x-42=7f\left(5x-3\right)
Whakareatia te \frac{7}{6} ki te 6, ka 7.
42x-42=35fx-21f
Whakamahia te āhuatanga tohatoha hei whakarea te 7f ki te 5x-3.
42x-42-35fx=-21f
Tangohia te 35fx mai i ngā taha e rua.
42x-35fx=-21f+42
Me tāpiri te 42 ki ngā taha e rua.
\left(42-35f\right)x=-21f+42
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(42-35f\right)x=42-21f
He hanga arowhānui tō te whārite.
\frac{\left(42-35f\right)x}{42-35f}=\frac{42-21f}{42-35f}
Whakawehea ngā taha e rua ki te 42-35f.
x=\frac{42-21f}{42-35f}
Mā te whakawehe ki te 42-35f ka wetekia te whakareanga ki te 42-35f.
x=\frac{3\left(2-f\right)}{6-5f}
Whakawehe -21f+42 ki te 42-35f.
x=\frac{3\left(2-f\right)}{6-5f}\text{, }x\neq \frac{3}{5}
Tē taea kia ōrite te tāupe x ki \frac{3}{5}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}