Whakaoti mō x
x=-3
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Pahekotia te -6x me 3x, ka -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-7x+12 ki te 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Pahekotia te -3x me -28x, ka -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Tāpirihia te -12 ki te 48, ka 36.
6x^{2}-31x+36-30=5x^{2}-36x
Tangohia te 30 mai i ngā taha e rua.
6x^{2}-31x+6=5x^{2}-36x
Tangohia te 30 i te 36, ka 6.
6x^{2}-31x+6-5x^{2}=-36x
Tangohia te 5x^{2} mai i ngā taha e rua.
x^{2}-31x+6=-36x
Pahekotia te 6x^{2} me -5x^{2}, ka x^{2}.
x^{2}-31x+6+36x=0
Me tāpiri te 36x ki ngā taha e rua.
x^{2}+5x+6=0
Pahekotia te -31x me 36x, ka 5x.
a+b=5 ab=6
Hei whakaoti i te whārite, whakatauwehea te x^{2}+5x+6 mā te whakamahi i te tātai x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x+2\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe \left(x+a\right)\left(x+b\right) mā ngā uara i tātaihia.
x=-2 x=-3
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Pahekotia te -6x me 3x, ka -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-7x+12 ki te 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Pahekotia te -3x me -28x, ka -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Tāpirihia te -12 ki te 48, ka 36.
6x^{2}-31x+36-30=5x^{2}-36x
Tangohia te 30 mai i ngā taha e rua.
6x^{2}-31x+6=5x^{2}-36x
Tangohia te 30 i te 36, ka 6.
6x^{2}-31x+6-5x^{2}=-36x
Tangohia te 5x^{2} mai i ngā taha e rua.
x^{2}-31x+6=-36x
Pahekotia te 6x^{2} me -5x^{2}, ka x^{2}.
x^{2}-31x+6+36x=0
Me tāpiri te 36x ki ngā taha e rua.
x^{2}+5x+6=0
Pahekotia te -31x me 36x, ka 5x.
a+b=5 ab=1\times 6=6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,6 2,3
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 6.
1+6=7 2+3=5
Tātaihia te tapeke mō ia takirua.
a=2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Tuhia anō te x^{2}+5x+6 hei \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(x+2\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi x+2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-2 x=-3
Hei kimi otinga whārite, me whakaoti te x+2=0 me te x+3=0.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Pahekotia te -6x me 3x, ka -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-7x+12 ki te 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Pahekotia te -3x me -28x, ka -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Tāpirihia te -12 ki te 48, ka 36.
6x^{2}-31x+36-30=5x^{2}-36x
Tangohia te 30 mai i ngā taha e rua.
6x^{2}-31x+6=5x^{2}-36x
Tangohia te 30 i te 36, ka 6.
6x^{2}-31x+6-5x^{2}=-36x
Tangohia te 5x^{2} mai i ngā taha e rua.
x^{2}-31x+6=-36x
Pahekotia te 6x^{2} me -5x^{2}, ka x^{2}.
x^{2}-31x+6+36x=0
Me tāpiri te 36x ki ngā taha e rua.
x^{2}+5x+6=0
Pahekotia te -31x me 36x, ka 5x.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 5 mō b, me 6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Pūrua 5.
x=\frac{-5±\sqrt{25-24}}{2}
Whakareatia -4 ki te 6.
x=\frac{-5±\sqrt{1}}{2}
Tāpiri 25 ki te -24.
x=\frac{-5±1}{2}
Tuhia te pūtakerua o te 1.
x=-\frac{4}{2}
Nā, me whakaoti te whārite x=\frac{-5±1}{2} ina he tāpiri te ±. Tāpiri -5 ki te 1.
x=-2
Whakawehe -4 ki te 2.
x=-\frac{6}{2}
Nā, me whakaoti te whārite x=\frac{-5±1}{2} ina he tango te ±. Tango 1 mai i -5.
x=-3
Whakawehe -6 ki te 2.
x=-2 x=-3
Kua oti te whārite te whakatau.
\left(x-3\right)\times 2x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 3,4 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(x-4\right)\left(x-3\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-4,x-3,x^{2}-7x+12.
\left(2x-6\right)x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-3 ki te 2.
2x^{2}-6x+\left(x-4\right)\times 3+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te 2x-6 ki te x.
2x^{2}-6x+3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x-4 ki te 3.
2x^{2}-3x-12+\left(x-4\right)\left(x-3\right)\times 4=30+5x^{2}-36x
Pahekotia te -6x me 3x, ka -3x.
2x^{2}-3x-12+\left(x^{2}-7x+12\right)\times 4=30+5x^{2}-36x
Whakamahia te āhuatanga tuaritanga hei whakarea te x-4 ki te x-3 ka whakakotahi i ngā kupu rite.
2x^{2}-3x-12+4x^{2}-28x+48=30+5x^{2}-36x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-7x+12 ki te 4.
6x^{2}-3x-12-28x+48=30+5x^{2}-36x
Pahekotia te 2x^{2} me 4x^{2}, ka 6x^{2}.
6x^{2}-31x-12+48=30+5x^{2}-36x
Pahekotia te -3x me -28x, ka -31x.
6x^{2}-31x+36=30+5x^{2}-36x
Tāpirihia te -12 ki te 48, ka 36.
6x^{2}-31x+36-5x^{2}=30-36x
Tangohia te 5x^{2} mai i ngā taha e rua.
x^{2}-31x+36=30-36x
Pahekotia te 6x^{2} me -5x^{2}, ka x^{2}.
x^{2}-31x+36+36x=30
Me tāpiri te 36x ki ngā taha e rua.
x^{2}+5x+36=30
Pahekotia te -31x me 36x, ka 5x.
x^{2}+5x=30-36
Tangohia te 36 mai i ngā taha e rua.
x^{2}+5x=-6
Tangohia te 36 i te 30, ka -6.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=-6+\left(\frac{5}{2}\right)^{2}
Whakawehea te 5, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{2}. Nā, tāpiria te pūrua o te \frac{5}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+5x+\frac{25}{4}=-6+\frac{25}{4}
Pūruatia \frac{5}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+5x+\frac{25}{4}=\frac{1}{4}
Tāpiri -6 ki te \frac{25}{4}.
\left(x+\frac{5}{2}\right)^{2}=\frac{1}{4}
Tauwehea x^{2}+5x+\frac{25}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{2}=\frac{1}{2} x+\frac{5}{2}=-\frac{1}{2}
Whakarūnātia.
x=-2 x=-3
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}