Whakaoti mō x
x=-1
x=\frac{10}{13}\approx 0.769230769
Graph
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { 2 x } { x - 2 } = 5 + \frac { 13 x ^ { 2 } } { x - 2 }
Tohaina
Kua tāruatia ki te papatopenga
2x=\left(x-2\right)\times 5+13x^{2}
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
2x=5x-10+13x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 5.
2x-5x=-10+13x^{2}
Tangohia te 5x mai i ngā taha e rua.
-3x=-10+13x^{2}
Pahekotia te 2x me -5x, ka -3x.
-3x-\left(-10\right)=13x^{2}
Tangohia te -10 mai i ngā taha e rua.
-3x+10=13x^{2}
Ko te tauaro o -10 ko 10.
-3x+10-13x^{2}=0
Tangohia te 13x^{2} mai i ngā taha e rua.
-13x^{2}-3x+10=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-3 ab=-13\times 10=-130
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -13x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-130 2,-65 5,-26 10,-13
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -130.
1-130=-129 2-65=-63 5-26=-21 10-13=-3
Tātaihia te tapeke mō ia takirua.
a=10 b=-13
Ko te otinga te takirua ka hoatu i te tapeke -3.
\left(-13x^{2}+10x\right)+\left(-13x+10\right)
Tuhia anō te -13x^{2}-3x+10 hei \left(-13x^{2}+10x\right)+\left(-13x+10\right).
-x\left(13x-10\right)-\left(13x-10\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(13x-10\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 13x-10 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{10}{13} x=-1
Hei kimi otinga whārite, me whakaoti te 13x-10=0 me te -x-1=0.
2x=\left(x-2\right)\times 5+13x^{2}
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
2x=5x-10+13x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 5.
2x-5x=-10+13x^{2}
Tangohia te 5x mai i ngā taha e rua.
-3x=-10+13x^{2}
Pahekotia te 2x me -5x, ka -3x.
-3x-\left(-10\right)=13x^{2}
Tangohia te -10 mai i ngā taha e rua.
-3x+10=13x^{2}
Ko te tauaro o -10 ko 10.
-3x+10-13x^{2}=0
Tangohia te 13x^{2} mai i ngā taha e rua.
-13x^{2}-3x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-13\right)\times 10}}{2\left(-13\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -13 mō a, -3 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-13\right)\times 10}}{2\left(-13\right)}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+52\times 10}}{2\left(-13\right)}
Whakareatia -4 ki te -13.
x=\frac{-\left(-3\right)±\sqrt{9+520}}{2\left(-13\right)}
Whakareatia 52 ki te 10.
x=\frac{-\left(-3\right)±\sqrt{529}}{2\left(-13\right)}
Tāpiri 9 ki te 520.
x=\frac{-\left(-3\right)±23}{2\left(-13\right)}
Tuhia te pūtakerua o te 529.
x=\frac{3±23}{2\left(-13\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±23}{-26}
Whakareatia 2 ki te -13.
x=\frac{26}{-26}
Nā, me whakaoti te whārite x=\frac{3±23}{-26} ina he tāpiri te ±. Tāpiri 3 ki te 23.
x=-1
Whakawehe 26 ki te -26.
x=-\frac{20}{-26}
Nā, me whakaoti te whārite x=\frac{3±23}{-26} ina he tango te ±. Tango 23 mai i 3.
x=\frac{10}{13}
Whakahekea te hautanga \frac{-20}{-26} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-1 x=\frac{10}{13}
Kua oti te whārite te whakatau.
2x=\left(x-2\right)\times 5+13x^{2}
Tē taea kia ōrite te tāupe x ki 2 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x-2.
2x=5x-10+13x^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 5.
2x-5x=-10+13x^{2}
Tangohia te 5x mai i ngā taha e rua.
-3x=-10+13x^{2}
Pahekotia te 2x me -5x, ka -3x.
-3x-13x^{2}=-10
Tangohia te 13x^{2} mai i ngā taha e rua.
-13x^{2}-3x=-10
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-13x^{2}-3x}{-13}=-\frac{10}{-13}
Whakawehea ngā taha e rua ki te -13.
x^{2}+\left(-\frac{3}{-13}\right)x=-\frac{10}{-13}
Mā te whakawehe ki te -13 ka wetekia te whakareanga ki te -13.
x^{2}+\frac{3}{13}x=-\frac{10}{-13}
Whakawehe -3 ki te -13.
x^{2}+\frac{3}{13}x=\frac{10}{13}
Whakawehe -10 ki te -13.
x^{2}+\frac{3}{13}x+\left(\frac{3}{26}\right)^{2}=\frac{10}{13}+\left(\frac{3}{26}\right)^{2}
Whakawehea te \frac{3}{13}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{26}. Nā, tāpiria te pūrua o te \frac{3}{26} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3}{13}x+\frac{9}{676}=\frac{10}{13}+\frac{9}{676}
Pūruatia \frac{3}{26} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{3}{13}x+\frac{9}{676}=\frac{529}{676}
Tāpiri \frac{10}{13} ki te \frac{9}{676} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{26}\right)^{2}=\frac{529}{676}
Tauwehea x^{2}+\frac{3}{13}x+\frac{9}{676}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{26}\right)^{2}}=\sqrt{\frac{529}{676}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{26}=\frac{23}{26} x+\frac{3}{26}=-\frac{23}{26}
Whakarūnātia.
x=\frac{10}{13} x=-1
Me tango \frac{3}{26} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}