Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2x\left(x+2\right)}{x^{2}-4}
Whakawehe \frac{2x}{x^{2}-4} ki te \frac{1}{x+2} mā te whakarea \frac{2x}{x^{2}-4} ki te tau huripoki o \frac{1}{x+2}.
\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2x}{x-2}
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x+2\right)}{x^{2}-4})
Whakawehe \frac{2x}{x^{2}-4} ki te \frac{1}{x+2} mā te whakarea \frac{2x}{x^{2}-4} ki te tau huripoki o \frac{1}{x+2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)})
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2x\left(x+2\right)}{x^{2}-4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x}{x-2})
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{1})-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{1}-2\right)\times 2x^{1-1}-2x^{1}x^{1-1}}{\left(x^{1}-2\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{1}-2\right)\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{1}\times 2x^{0}-2\times 2x^{0}-2x^{1}x^{0}}{\left(x^{1}-2\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2x^{1}-2\times 2x^{0}-2x^{1}}{\left(x^{1}-2\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{2x^{1}-4x^{0}-2x^{1}}{\left(x^{1}-2\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(2-2\right)x^{1}-4x^{0}}{\left(x^{1}-2\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{-4x^{0}}{\left(x^{1}-2\right)^{2}}
Tango 2 mai i 2.
\frac{-4x^{0}}{\left(x-2\right)^{2}}
Mō tētahi kupu t, t^{1}=t.
\frac{-4}{\left(x-2\right)^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.