Whakaoti mō x
x=7
x=\frac{1}{7}\approx 0.142857143
Graph
Tohaina
Kua tāruatia ki te papatopenga
25\times 2x=7\left(x^{2}+1\right)
Me whakarea ngā taha e rua o te whārite ki te 25\left(x^{2}+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+1,25.
50x=7\left(x^{2}+1\right)
Whakareatia te 25 ki te 2, ka 50.
50x=7x^{2}+7
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x^{2}+1.
50x-7x^{2}=7
Tangohia te 7x^{2} mai i ngā taha e rua.
50x-7x^{2}-7=0
Tangohia te 7 mai i ngā taha e rua.
-7x^{2}+50x-7=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=50 ab=-7\left(-7\right)=49
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -7x^{2}+ax+bx-7. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,49 7,7
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 49.
1+49=50 7+7=14
Tātaihia te tapeke mō ia takirua.
a=49 b=1
Ko te otinga te takirua ka hoatu i te tapeke 50.
\left(-7x^{2}+49x\right)+\left(x-7\right)
Tuhia anō te -7x^{2}+50x-7 hei \left(-7x^{2}+49x\right)+\left(x-7\right).
7x\left(-x+7\right)-\left(-x+7\right)
Tauwehea te 7x i te tuatahi me te -1 i te rōpū tuarua.
\left(-x+7\right)\left(7x-1\right)
Whakatauwehea atu te kīanga pātahi -x+7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=\frac{1}{7}
Hei kimi otinga whārite, me whakaoti te -x+7=0 me te 7x-1=0.
25\times 2x=7\left(x^{2}+1\right)
Me whakarea ngā taha e rua o te whārite ki te 25\left(x^{2}+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+1,25.
50x=7\left(x^{2}+1\right)
Whakareatia te 25 ki te 2, ka 50.
50x=7x^{2}+7
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x^{2}+1.
50x-7x^{2}=7
Tangohia te 7x^{2} mai i ngā taha e rua.
50x-7x^{2}-7=0
Tangohia te 7 mai i ngā taha e rua.
-7x^{2}+50x-7=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-50±\sqrt{50^{2}-4\left(-7\right)\left(-7\right)}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, 50 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-50±\sqrt{2500-4\left(-7\right)\left(-7\right)}}{2\left(-7\right)}
Pūrua 50.
x=\frac{-50±\sqrt{2500+28\left(-7\right)}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
x=\frac{-50±\sqrt{2500-196}}{2\left(-7\right)}
Whakareatia 28 ki te -7.
x=\frac{-50±\sqrt{2304}}{2\left(-7\right)}
Tāpiri 2500 ki te -196.
x=\frac{-50±48}{2\left(-7\right)}
Tuhia te pūtakerua o te 2304.
x=\frac{-50±48}{-14}
Whakareatia 2 ki te -7.
x=-\frac{2}{-14}
Nā, me whakaoti te whārite x=\frac{-50±48}{-14} ina he tāpiri te ±. Tāpiri -50 ki te 48.
x=\frac{1}{7}
Whakahekea te hautanga \frac{-2}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{98}{-14}
Nā, me whakaoti te whārite x=\frac{-50±48}{-14} ina he tango te ±. Tango 48 mai i -50.
x=7
Whakawehe -98 ki te -14.
x=\frac{1}{7} x=7
Kua oti te whārite te whakatau.
25\times 2x=7\left(x^{2}+1\right)
Me whakarea ngā taha e rua o te whārite ki te 25\left(x^{2}+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o x^{2}+1,25.
50x=7\left(x^{2}+1\right)
Whakareatia te 25 ki te 2, ka 50.
50x=7x^{2}+7
Whakamahia te āhuatanga tohatoha hei whakarea te 7 ki te x^{2}+1.
50x-7x^{2}=7
Tangohia te 7x^{2} mai i ngā taha e rua.
-7x^{2}+50x=7
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-7x^{2}+50x}{-7}=\frac{7}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\frac{50}{-7}x=\frac{7}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}-\frac{50}{7}x=\frac{7}{-7}
Whakawehe 50 ki te -7.
x^{2}-\frac{50}{7}x=-1
Whakawehe 7 ki te -7.
x^{2}-\frac{50}{7}x+\left(-\frac{25}{7}\right)^{2}=-1+\left(-\frac{25}{7}\right)^{2}
Whakawehea te -\frac{50}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{25}{7}. Nā, tāpiria te pūrua o te -\frac{25}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{50}{7}x+\frac{625}{49}=-1+\frac{625}{49}
Pūruatia -\frac{25}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{50}{7}x+\frac{625}{49}=\frac{576}{49}
Tāpiri -1 ki te \frac{625}{49}.
\left(x-\frac{25}{7}\right)^{2}=\frac{576}{49}
Tauwehea x^{2}-\frac{50}{7}x+\frac{625}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{25}{7}\right)^{2}}=\sqrt{\frac{576}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{25}{7}=\frac{24}{7} x-\frac{25}{7}=-\frac{24}{7}
Whakarūnātia.
x=7 x=\frac{1}{7}
Me tāpiri \frac{25}{7} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}