Aromātai
-\frac{3\left(x+1\right)}{x^{2}-9}
Whakaroha
-\frac{3\left(x+1\right)}{x^{2}-9}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+3 me x-3 ko \left(x-3\right)\left(x+3\right). Whakareatia \frac{2x}{x+3} ki te \frac{x-3}{x-3}. Whakareatia \frac{x}{x-3} ki te \frac{x+3}{x+3}.
\frac{2x\left(x-3\right)+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Tā te mea he rite te tauraro o \frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} me \frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x^{2}-6x+x^{2}+3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Mahia ngā whakarea i roto o 2x\left(x-3\right)+x\left(x+3\right).
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Whakakotahitia ngā kupu rite i 2x^{2}-6x+x^{2}+3x.
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)}
Tauwehea te x^{2}-9.
\frac{3x^{2}-3x-\left(3x^{2}+3\right)}{\left(x-3\right)\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)} me \frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{2}-3x-3x^{2}-3}{\left(x-3\right)\left(x+3\right)}
Mahia ngā whakarea i roto o 3x^{2}-3x-\left(3x^{2}+3\right).
\frac{-3x-3}{\left(x-3\right)\left(x+3\right)}
Whakakotahitia ngā kupu rite i 3x^{2}-3x-3x^{2}-3.
\frac{-3x-3}{x^{2}-9}
Whakarohaina te \left(x-3\right)\left(x+3\right).
\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o x+3 me x-3 ko \left(x-3\right)\left(x+3\right). Whakareatia \frac{2x}{x+3} ki te \frac{x-3}{x-3}. Whakareatia \frac{x}{x-3} ki te \frac{x+3}{x+3}.
\frac{2x\left(x-3\right)+x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Tā te mea he rite te tauraro o \frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} me \frac{x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2x^{2}-6x+x^{2}+3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Mahia ngā whakarea i roto o 2x\left(x-3\right)+x\left(x+3\right).
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{x^{2}-9}
Whakakotahitia ngā kupu rite i 2x^{2}-6x+x^{2}+3x.
\frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)}-\frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)}
Tauwehea te x^{2}-9.
\frac{3x^{2}-3x-\left(3x^{2}+3\right)}{\left(x-3\right)\left(x+3\right)}
Tā te mea he rite te tauraro o \frac{3x^{2}-3x}{\left(x-3\right)\left(x+3\right)} me \frac{3x^{2}+3}{\left(x-3\right)\left(x+3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{3x^{2}-3x-3x^{2}-3}{\left(x-3\right)\left(x+3\right)}
Mahia ngā whakarea i roto o 3x^{2}-3x-\left(3x^{2}+3\right).
\frac{-3x-3}{\left(x-3\right)\left(x+3\right)}
Whakakotahitia ngā kupu rite i 3x^{2}-3x-3x^{2}-3.
\frac{-3x-3}{x^{2}-9}
Whakarohaina te \left(x-3\right)\left(x+3\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}