Aromātai
\frac{2s+5b+15}{\left(b+5\right)\left(s+b\right)}
Kimi Pārōnaki e ai ki s
-\frac{3}{\left(s+b\right)^{2}}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { 2 x } { 5 x + b x } + \frac { 3 y } { s y + b y } =
Tohaina
Kua tāruatia ki te papatopenga
\frac{2x}{x\left(b+5\right)}+\frac{3y}{sy+by}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{2x}{5x+bx}.
\frac{2}{b+5}+\frac{3y}{sy+by}
Me whakakore tahi te x i te taurunga me te tauraro.
\frac{2}{b+5}+\frac{3y}{y\left(b+s\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{3y}{sy+by}.
\frac{2}{b+5}+\frac{3}{s+b}
Me whakakore tahi te y i te taurunga me te tauraro.
\frac{2\left(s+b\right)}{\left(b+5\right)\left(s+b\right)}+\frac{3\left(b+5\right)}{\left(b+5\right)\left(s+b\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o b+5 me s+b ko \left(b+5\right)\left(s+b\right). Whakareatia \frac{2}{b+5} ki te \frac{s+b}{s+b}. Whakareatia \frac{3}{s+b} ki te \frac{b+5}{b+5}.
\frac{2\left(s+b\right)+3\left(b+5\right)}{\left(b+5\right)\left(s+b\right)}
Tā te mea he rite te tauraro o \frac{2\left(s+b\right)}{\left(b+5\right)\left(s+b\right)} me \frac{3\left(b+5\right)}{\left(b+5\right)\left(s+b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2s+2b+3b+15}{\left(b+5\right)\left(s+b\right)}
Mahia ngā whakarea i roto o 2\left(s+b\right)+3\left(b+5\right).
\frac{2s+5b+15}{\left(b+5\right)\left(s+b\right)}
Whakakotahitia ngā kupu rite i 2s+2b+3b+15.
\frac{2s+5b+15}{bs+5s+b^{2}+5b}
Whakarohaina te \left(b+5\right)\left(s+b\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}