Whakaoti mō x
x=-210
x=70
Graph
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
\frac { 2 x } { 210 - x } = \frac { 210 - x } { 2 x }
Tohaina
Kua tāruatia ki te papatopenga
-2x\times 2x=\left(x-210\right)\left(210-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,210 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x-210\right), arā, te tauraro pātahi he tino iti rawa te kitea o 210-x,2x.
-4xx=\left(x-210\right)\left(210-x\right)
Whakareatia te -2 ki te 2, ka -4.
-4x^{2}=\left(x-210\right)\left(210-x\right)
Whakareatia te x ki te x, ka x^{2}.
-4x^{2}=420x-x^{2}-44100
Whakamahia te āhuatanga tuaritanga hei whakarea te x-210 ki te 210-x ka whakakotahi i ngā kupu rite.
-4x^{2}-420x=-x^{2}-44100
Tangohia te 420x mai i ngā taha e rua.
-4x^{2}-420x+x^{2}=-44100
Me tāpiri te x^{2} ki ngā taha e rua.
-3x^{2}-420x=-44100
Pahekotia te -4x^{2} me x^{2}, ka -3x^{2}.
-3x^{2}-420x+44100=0
Me tāpiri te 44100 ki ngā taha e rua.
x=\frac{-\left(-420\right)±\sqrt{\left(-420\right)^{2}-4\left(-3\right)\times 44100}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -420 mō b, me 44100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-420\right)±\sqrt{176400-4\left(-3\right)\times 44100}}{2\left(-3\right)}
Pūrua -420.
x=\frac{-\left(-420\right)±\sqrt{176400+12\times 44100}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-420\right)±\sqrt{176400+529200}}{2\left(-3\right)}
Whakareatia 12 ki te 44100.
x=\frac{-\left(-420\right)±\sqrt{705600}}{2\left(-3\right)}
Tāpiri 176400 ki te 529200.
x=\frac{-\left(-420\right)±840}{2\left(-3\right)}
Tuhia te pūtakerua o te 705600.
x=\frac{420±840}{2\left(-3\right)}
Ko te tauaro o -420 ko 420.
x=\frac{420±840}{-6}
Whakareatia 2 ki te -3.
x=\frac{1260}{-6}
Nā, me whakaoti te whārite x=\frac{420±840}{-6} ina he tāpiri te ±. Tāpiri 420 ki te 840.
x=-210
Whakawehe 1260 ki te -6.
x=-\frac{420}{-6}
Nā, me whakaoti te whārite x=\frac{420±840}{-6} ina he tango te ±. Tango 840 mai i 420.
x=70
Whakawehe -420 ki te -6.
x=-210 x=70
Kua oti te whārite te whakatau.
-2x\times 2x=\left(x-210\right)\left(210-x\right)
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,210 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2x\left(x-210\right), arā, te tauraro pātahi he tino iti rawa te kitea o 210-x,2x.
-4xx=\left(x-210\right)\left(210-x\right)
Whakareatia te -2 ki te 2, ka -4.
-4x^{2}=\left(x-210\right)\left(210-x\right)
Whakareatia te x ki te x, ka x^{2}.
-4x^{2}=420x-x^{2}-44100
Whakamahia te āhuatanga tuaritanga hei whakarea te x-210 ki te 210-x ka whakakotahi i ngā kupu rite.
-4x^{2}-420x=-x^{2}-44100
Tangohia te 420x mai i ngā taha e rua.
-4x^{2}-420x+x^{2}=-44100
Me tāpiri te x^{2} ki ngā taha e rua.
-3x^{2}-420x=-44100
Pahekotia te -4x^{2} me x^{2}, ka -3x^{2}.
\frac{-3x^{2}-420x}{-3}=-\frac{44100}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{420}{-3}\right)x=-\frac{44100}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+140x=-\frac{44100}{-3}
Whakawehe -420 ki te -3.
x^{2}+140x=14700
Whakawehe -44100 ki te -3.
x^{2}+140x+70^{2}=14700+70^{2}
Whakawehea te 140, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 70. Nā, tāpiria te pūrua o te 70 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+140x+4900=14700+4900
Pūrua 70.
x^{2}+140x+4900=19600
Tāpiri 14700 ki te 4900.
\left(x+70\right)^{2}=19600
Tauwehea x^{2}+140x+4900. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+70\right)^{2}}=\sqrt{19600}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+70=140 x+70=-140
Whakarūnātia.
x=70 x=-210
Me tango 70 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}