Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\frac{1}{x^{2}y^{4}}x^{2}}{y}
Me whakakore tahi te 2x^{2} i te taurunga me te tauraro.
\frac{\frac{x^{2}}{x^{2}y^{4}}}{y}
Tuhia te \frac{1}{x^{2}y^{4}}x^{2} hei hautanga kotahi.
\frac{\frac{1}{y^{4}}}{y}
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{1}{y^{4}y}
Tuhia te \frac{\frac{1}{y^{4}}}{y} hei hautanga kotahi.
\frac{1}{y^{5}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 1 kia riro ai te 5.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{x^{2}y^{4}}x^{2}}{y})
Me whakakore tahi te 2x^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{x^{2}}{x^{2}y^{4}}}{y})
Tuhia te \frac{1}{x^{2}y^{4}}x^{2} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{\frac{1}{y^{4}}}{y})
Me whakakore tahi te x^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{4}y})
Tuhia te \frac{\frac{1}{y^{4}}}{y} hei hautanga kotahi.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{1}{y^{5}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te 1 kia riro ai te 5.
-\left(y^{5}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}y}(y^{5})
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(y^{5}\right)^{-2}\times 5y^{5-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-5y^{4}\left(y^{5}\right)^{-2}
Whakarūnātia.