Tīpoka ki ngā ihirangi matua
Kimi Pārōnaki e ai ki x
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(x^{3}+9\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3})-2x^{3}\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}+9)}{\left(x^{3}+9\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{\left(x^{3}+9\right)\times 3\times 2x^{3-1}-2x^{3}\times 3x^{3-1}}{\left(x^{3}+9\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{\left(x^{3}+9\right)\times 6x^{2}-2x^{3}\times 3x^{2}}{\left(x^{3}+9\right)^{2}}
Mahia ngā tātaitanga.
\frac{x^{3}\times 6x^{2}+9\times 6x^{2}-2x^{3}\times 3x^{2}}{\left(x^{3}+9\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{6x^{3+2}+9\times 6x^{2}-2\times 3x^{3+2}}{\left(x^{3}+9\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{6x^{5}+54x^{2}-6x^{5}}{\left(x^{3}+9\right)^{2}}
Mahia ngā tātaitanga.
\frac{\left(6-6\right)x^{5}+54x^{2}}{\left(x^{3}+9\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{54x^{2}}{\left(x^{3}+9\right)^{2}}
Tango 6 mai i 6.