Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2x^{3}\right)^{1}\times \frac{1}{-8x^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
2^{1}\left(x^{3}\right)^{1}\times \frac{1}{-8}\times \frac{1}{x^{4}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
2^{1}\times \frac{1}{-8}\left(x^{3}\right)^{1}\times \frac{1}{x^{4}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
2^{1}\times \frac{1}{-8}x^{3}x^{4\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
2^{1}\times \frac{1}{-8}x^{3}x^{-4}
Whakareatia 4 ki te -1.
2^{1}\times \frac{1}{-8}x^{3-4}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
2^{1}\times \frac{1}{-8}\times \frac{1}{x}
Tāpirihia ngā taupū 3 me -4.
2\times \frac{1}{-8}\times \frac{1}{x}
Hīkina te 2 ki te pū 1.
2\left(-\frac{1}{8}\right)\times \frac{1}{x}
Hīkina te -8 ki te pū -1.
-\frac{1}{4}\times \frac{1}{x}
Whakareatia 2 ki te -\frac{1}{8}.
\frac{2^{1}x^{3}}{\left(-8\right)^{1}x^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{2^{1}x^{3-4}}{\left(-8\right)^{1}}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{2^{1}\times \frac{1}{x}}{\left(-8\right)^{1}}
Tango 4 mai i 3.
-\frac{1}{4}\times \frac{1}{x}
Whakahekea te hautanga \frac{2}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2}{-8}x^{3-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{1}{4}\times \frac{1}{x})
Mahia ngā tātaitanga.
-\left(-\frac{1}{4}\right)x^{-1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{1}{4}x^{-2}
Mahia ngā tātaitanga.