Aromātai
\frac{2x-1}{x+6}
Whakaroha
\frac{2x-1}{x+6}
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{2x^{2}+7x-4}{x^{2}-36}\times \frac{\left(x-6\right)\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-4x-12}{x^{2}+6x+8}.
\frac{2x^{2}+7x-4}{x^{2}-36}\times \frac{x-6}{x+4}
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{\left(2x^{2}+7x-4\right)\left(x-6\right)}{\left(x^{2}-36\right)\left(x+4\right)}
Me whakarea te \frac{2x^{2}+7x-4}{x^{2}-36} ki te \frac{x-6}{x+4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x-6\right)\left(2x-1\right)\left(x+4\right)}{\left(x-6\right)\left(x+4\right)\left(x+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2x-1}{x+6}
Me whakakore tahi te \left(x-6\right)\left(x+4\right) i te taurunga me te tauraro.
\frac{2x^{2}+7x-4}{x^{2}-36}\times \frac{\left(x-6\right)\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{x^{2}-4x-12}{x^{2}+6x+8}.
\frac{2x^{2}+7x-4}{x^{2}-36}\times \frac{x-6}{x+4}
Me whakakore tahi te x+2 i te taurunga me te tauraro.
\frac{\left(2x^{2}+7x-4\right)\left(x-6\right)}{\left(x^{2}-36\right)\left(x+4\right)}
Me whakarea te \frac{2x^{2}+7x-4}{x^{2}-36} ki te \frac{x-6}{x+4} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(x-6\right)\left(2x-1\right)\left(x+4\right)}{\left(x-6\right)\left(x+4\right)\left(x+6\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{2x-1}{x+6}
Me whakakore tahi te \left(x-6\right)\left(x+4\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}