Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{3\left(2x^{2}+1\right)}{6}+\frac{2\left(3x^{2}-5\right)}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{2x^{2}+1}{2} ki te \frac{3}{3}. Whakareatia \frac{3x^{2}-5}{3} ki te \frac{2}{2}.
\frac{3\left(2x^{2}+1\right)+2\left(3x^{2}-5\right)}{6}
Tā te mea he rite te tauraro o \frac{3\left(2x^{2}+1\right)}{6} me \frac{2\left(3x^{2}-5\right)}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6x^{2}+3+6x^{2}-10}{6}
Mahia ngā whakarea i roto o 3\left(2x^{2}+1\right)+2\left(3x^{2}-5\right).
\frac{12x^{2}-7}{6}
Whakakotahitia ngā kupu rite i 6x^{2}+3+6x^{2}-10.
\frac{3\left(2x^{2}+1\right)}{6}+\frac{2\left(3x^{2}-5\right)}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{2x^{2}+1}{2} ki te \frac{3}{3}. Whakareatia \frac{3x^{2}-5}{3} ki te \frac{2}{2}.
\frac{3\left(2x^{2}+1\right)+2\left(3x^{2}-5\right)}{6}
Tā te mea he rite te tauraro o \frac{3\left(2x^{2}+1\right)}{6} me \frac{2\left(3x^{2}-5\right)}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6x^{2}+3+6x^{2}-10}{6}
Mahia ngā whakarea i roto o 3\left(2x^{2}+1\right)+2\left(3x^{2}-5\right).
\frac{12x^{2}-7}{6}
Whakakotahitia ngā kupu rite i 6x^{2}+3+6x^{2}-10.