Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2^{1}x^{10}y^{6}}{4^{1}x^{4}y^{8}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
\frac{2^{1}}{4^{1}}x^{10-4}y^{6-8}
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{2^{1}}{4^{1}}x^{6}y^{6-8}
Tango 4 mai i 10.
\frac{2^{1}}{4^{1}}x^{6}y^{-2}
Tango 8 mai i 6.
\frac{1}{2}x^{6}\times \frac{1}{y^{2}}
Whakahekea te hautanga \frac{2}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2y^{6}}{4y^{8}}x^{10-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{2y^{2}}x^{6})
Mahia ngā tātaitanga.
6\times \frac{1}{2y^{2}}x^{6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{3}{y^{2}}x^{5}
Mahia ngā tātaitanga.