Whakaoti mō x
x=-\frac{2}{5}=-0.4
Graph
Tohaina
Kua tāruatia ki te papatopenga
4\left(2x+5\right)=3\left(x+6\right)
Tē taea kia ōrite te tāupe x ki -6 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 4\left(x+6\right), arā, te tauraro pātahi he tino iti rawa te kitea o x+6,4.
8x+20=3\left(x+6\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te 2x+5.
8x+20=3x+18
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te x+6.
8x+20-3x=18
Tangohia te 3x mai i ngā taha e rua.
5x+20=18
Pahekotia te 8x me -3x, ka 5x.
5x=18-20
Tangohia te 20 mai i ngā taha e rua.
5x=-2
Tangohia te 20 i te 18, ka -2.
x=\frac{-2}{5}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}
Ka taea te hautanga \frac{-2}{5} te tuhi anō ko -\frac{2}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}