Whakaoti mō x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Pātaitai
Polynomial
\frac { 2 x + 1 } { x - 2 } + \frac { 4 } { x } = \frac { - 8 } { x ^ { 2 } - 2 x }
Tohaina
Kua tāruatia ki te papatopenga
x\left(2x+1\right)+\left(x-2\right)\times 4=-8
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x,x^{2}-2x.
2x^{2}+x+\left(x-2\right)\times 4=-8
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
2x^{2}+x+4x-8=-8
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 4.
2x^{2}+5x-8=-8
Pahekotia te x me 4x, ka 5x.
2x^{2}+5x-8+8=0
Me tāpiri te 8 ki ngā taha e rua.
2x^{2}+5x=0
Tāpirihia te -8 ki te 8, ka 0.
x\left(2x+5\right)=0
Tauwehea te x.
x=0 x=-\frac{5}{2}
Hei kimi otinga whārite, me whakaoti te x=0 me te 2x+5=0.
x=-\frac{5}{2}
Tē taea kia ōrite te tāupe x ki 0.
x\left(2x+1\right)+\left(x-2\right)\times 4=-8
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x,x^{2}-2x.
2x^{2}+x+\left(x-2\right)\times 4=-8
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
2x^{2}+x+4x-8=-8
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 4.
2x^{2}+5x-8=-8
Pahekotia te x me 4x, ka 5x.
2x^{2}+5x-8+8=0
Me tāpiri te 8 ki ngā taha e rua.
2x^{2}+5x=0
Tāpirihia te -8 ki te 8, ka 0.
x=\frac{-5±\sqrt{5^{2}}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 5 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±5}{2\times 2}
Tuhia te pūtakerua o te 5^{2}.
x=\frac{-5±5}{4}
Whakareatia 2 ki te 2.
x=\frac{0}{4}
Nā, me whakaoti te whārite x=\frac{-5±5}{4} ina he tāpiri te ±. Tāpiri -5 ki te 5.
x=0
Whakawehe 0 ki te 4.
x=-\frac{10}{4}
Nā, me whakaoti te whārite x=\frac{-5±5}{4} ina he tango te ±. Tango 5 mai i -5.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=0 x=-\frac{5}{2}
Kua oti te whārite te whakatau.
x=-\frac{5}{2}
Tē taea kia ōrite te tāupe x ki 0.
x\left(2x+1\right)+\left(x-2\right)\times 4=-8
Tē taea kia ōrite te tāupe x ki tētahi o ngā uara 0,2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te x\left(x-2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x-2,x,x^{2}-2x.
2x^{2}+x+\left(x-2\right)\times 4=-8
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2x+1.
2x^{2}+x+4x-8=-8
Whakamahia te āhuatanga tohatoha hei whakarea te x-2 ki te 4.
2x^{2}+5x-8=-8
Pahekotia te x me 4x, ka 5x.
2x^{2}+5x=-8+8
Me tāpiri te 8 ki ngā taha e rua.
2x^{2}+5x=0
Tāpirihia te -8 ki te 8, ka 0.
\frac{2x^{2}+5x}{2}=\frac{0}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{5}{2}x=\frac{0}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{5}{2}x=0
Whakawehe 0 ki te 2.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{5}{4}\right)^{2}=\frac{25}{16}
Tauwehea x^{2}+\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{4}=\frac{5}{4} x+\frac{5}{4}=-\frac{5}{4}
Whakarūnātia.
x=0 x=-\frac{5}{2}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
x=-\frac{5}{2}
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}